Edwin Fischer, Outmane Laaroussi, O. Segou, J. Monserrat, D. García-Roger, Roman Antun Saakel, Timothe Scheich
{"title":"5G用于CAM跨境走廊部署研究","authors":"Edwin Fischer, Outmane Laaroussi, O. Segou, J. Monserrat, D. García-Roger, Roman Antun Saakel, Timothe Scheich","doi":"10.1109/FNWF55208.2022.00011","DOIUrl":null,"url":null,"abstract":"The three Horizon 2020 ICT -18 projects 5G- CARMEN, 5GCroCo, and 5G-MOBIX conducted deployment studies on 5G for Connected and Automated Mobility (CAM) on European road transportation cross-border corridors based upon upon their target cross-border corridors. These cross- border corridors represent a broad sample of road arteria of the Trans-European Transport Network (TEN-T) with very different geographic characteristics, representative of a wide range of 5G for CAM deployments in Europe and even beyond. The deployment studies share technical commonalities like 5G New Radio deployment in the low band and mid-band spectrum but take into consideration distinct assumptions, e.g., penetration and load for radio planning and deployment. Dimensioning for evolving capacity requirements is applied based on 5G for CAM use cases including non-CAM background traffic. The deployment of Mobile Edge Computing (MEC) is considered for CAM in all three studies, partly with different deployment options. The studies include a range of cost indications for 5G deployment and partially discuss the economic viability of 5G deployment on road corridors based on commercial assumptions, and, in economically challenging corridor sections, even with potential support of public co- financing schemes. Complementing these three studies, a metastudy has been produced, providing a comparative analysis plus a gap analysis identifying additional elements for further study to foster cross-border deployment of 5G for CAM. Elements and findings of these deployment studies can be used in ongoing research and innovation projects, but also in future deployment studies and real deployment activities related to 5G for CAM, namely in the context of the Connecting Europe Facility (CEF2)-Digital 5G corridor initiative.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"5G for CAM cross-border corridor deployment studies\",\"authors\":\"Edwin Fischer, Outmane Laaroussi, O. Segou, J. Monserrat, D. García-Roger, Roman Antun Saakel, Timothe Scheich\",\"doi\":\"10.1109/FNWF55208.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three Horizon 2020 ICT -18 projects 5G- CARMEN, 5GCroCo, and 5G-MOBIX conducted deployment studies on 5G for Connected and Automated Mobility (CAM) on European road transportation cross-border corridors based upon upon their target cross-border corridors. These cross- border corridors represent a broad sample of road arteria of the Trans-European Transport Network (TEN-T) with very different geographic characteristics, representative of a wide range of 5G for CAM deployments in Europe and even beyond. The deployment studies share technical commonalities like 5G New Radio deployment in the low band and mid-band spectrum but take into consideration distinct assumptions, e.g., penetration and load for radio planning and deployment. Dimensioning for evolving capacity requirements is applied based on 5G for CAM use cases including non-CAM background traffic. The deployment of Mobile Edge Computing (MEC) is considered for CAM in all three studies, partly with different deployment options. The studies include a range of cost indications for 5G deployment and partially discuss the economic viability of 5G deployment on road corridors based on commercial assumptions, and, in economically challenging corridor sections, even with potential support of public co- financing schemes. Complementing these three studies, a metastudy has been produced, providing a comparative analysis plus a gap analysis identifying additional elements for further study to foster cross-border deployment of 5G for CAM. Elements and findings of these deployment studies can be used in ongoing research and innovation projects, but also in future deployment studies and real deployment activities related to 5G for CAM, namely in the context of the Connecting Europe Facility (CEF2)-Digital 5G corridor initiative.\",\"PeriodicalId\":300165,\"journal\":{\"name\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FNWF55208.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
5G for CAM cross-border corridor deployment studies
The three Horizon 2020 ICT -18 projects 5G- CARMEN, 5GCroCo, and 5G-MOBIX conducted deployment studies on 5G for Connected and Automated Mobility (CAM) on European road transportation cross-border corridors based upon upon their target cross-border corridors. These cross- border corridors represent a broad sample of road arteria of the Trans-European Transport Network (TEN-T) with very different geographic characteristics, representative of a wide range of 5G for CAM deployments in Europe and even beyond. The deployment studies share technical commonalities like 5G New Radio deployment in the low band and mid-band spectrum but take into consideration distinct assumptions, e.g., penetration and load for radio planning and deployment. Dimensioning for evolving capacity requirements is applied based on 5G for CAM use cases including non-CAM background traffic. The deployment of Mobile Edge Computing (MEC) is considered for CAM in all three studies, partly with different deployment options. The studies include a range of cost indications for 5G deployment and partially discuss the economic viability of 5G deployment on road corridors based on commercial assumptions, and, in economically challenging corridor sections, even with potential support of public co- financing schemes. Complementing these three studies, a metastudy has been produced, providing a comparative analysis plus a gap analysis identifying additional elements for further study to foster cross-border deployment of 5G for CAM. Elements and findings of these deployment studies can be used in ongoing research and innovation projects, but also in future deployment studies and real deployment activities related to 5G for CAM, namely in the context of the Connecting Europe Facility (CEF2)-Digital 5G corridor initiative.