基于生成对抗网络的室内定位接收信号强度预测

Haochang Wu, Hao Qin, Siteng Ma, Hans-Dieter Lang, Xingqi Zhang
{"title":"基于生成对抗网络的室内定位接收信号强度预测","authors":"Haochang Wu, Hao Qin, Siteng Ma, Hans-Dieter Lang, Xingqi Zhang","doi":"10.1109/PIERS59004.2023.10221373","DOIUrl":null,"url":null,"abstract":"The popularity of WiFi networks has led to the adoption of fingerprint-based WiFi localization as one primary method for indoor location tracking. However, this technique requires a significant amount of time and effort to collect data at numerous reference points (RPs) to ensure accuracy. To reduce the cost and improve efficiency, generative models can be used to generate received signal strength (RSS) fingerprints. This paper proposes a Deep Convolutional Generative Adversarial Network (DCGAN) based model for building RSS fingerprint maps that can generate a comprehensive fingerprint database using only the location of a wireless access point. The proposed approach is expected to lower the cost and effort involved in the collection of RSS fingerprints while maintaining a high level of accuracy.","PeriodicalId":354610,"journal":{"name":"2023 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Received Signal Strength Prediction Using Generative Adversarial Networks for Indoor Localization\",\"authors\":\"Haochang Wu, Hao Qin, Siteng Ma, Hans-Dieter Lang, Xingqi Zhang\",\"doi\":\"10.1109/PIERS59004.2023.10221373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of WiFi networks has led to the adoption of fingerprint-based WiFi localization as one primary method for indoor location tracking. However, this technique requires a significant amount of time and effort to collect data at numerous reference points (RPs) to ensure accuracy. To reduce the cost and improve efficiency, generative models can be used to generate received signal strength (RSS) fingerprints. This paper proposes a Deep Convolutional Generative Adversarial Network (DCGAN) based model for building RSS fingerprint maps that can generate a comprehensive fingerprint database using only the location of a wireless access point. The proposed approach is expected to lower the cost and effort involved in the collection of RSS fingerprints while maintaining a high level of accuracy.\",\"PeriodicalId\":354610,\"journal\":{\"name\":\"2023 Photonics & Electromagnetics Research Symposium (PIERS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Photonics & Electromagnetics Research Symposium (PIERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIERS59004.2023.10221373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS59004.2023.10221373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

WiFi网络的普及使得基于指纹的WiFi定位成为室内位置跟踪的主要方法之一。然而,这种技术需要花费大量的时间和精力在众多参考点(rp)收集数据,以确保准确性。为了降低成本和提高效率,可以使用生成模型生成接收信号强度(RSS)指纹。本文提出了一种基于深度卷积生成对抗网络(DCGAN)的RSS指纹图谱构建模型,该模型仅使用无线接入点的位置就可以生成一个全面的指纹数据库。所提出的方法有望降低收集RSS指纹的成本和工作量,同时保持高水平的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Received Signal Strength Prediction Using Generative Adversarial Networks for Indoor Localization
The popularity of WiFi networks has led to the adoption of fingerprint-based WiFi localization as one primary method for indoor location tracking. However, this technique requires a significant amount of time and effort to collect data at numerous reference points (RPs) to ensure accuracy. To reduce the cost and improve efficiency, generative models can be used to generate received signal strength (RSS) fingerprints. This paper proposes a Deep Convolutional Generative Adversarial Network (DCGAN) based model for building RSS fingerprint maps that can generate a comprehensive fingerprint database using only the location of a wireless access point. The proposed approach is expected to lower the cost and effort involved in the collection of RSS fingerprints while maintaining a high level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Calibration of Radar and Camera Images A Microwave Reflection-Based Measurement System for Moisture Detection in Textiles Design and Simulation of a Flood Forecasting and Alerting System: A Focus on Rwanda Localized Bessel Beams for Near-Field Focused Antenna Arrays in Biomedical Contexts Design and Analysis of a Compact Frequency Beam-scanning Leaky-wave Antenna Based on Slow-wave Half-mode Substrate Integrated Waveguide and Spoof Surface Plasmon Polaritons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1