双测量血液微流控共流装置的优化

Amit Nayak, C. Armstrong, C. Mavriplis, M. Fenech
{"title":"双测量血液微流控共流装置的优化","authors":"Amit Nayak, C. Armstrong, C. Mavriplis, M. Fenech","doi":"10.1109/MeMeA52024.2021.9478718","DOIUrl":null,"url":null,"abstract":"Microfluidics is a prominent field used to analyze small amounts of biological fluids. Co-Flow microfluidic devices can be used to study red blood cell aggregation in blood samples under a controlled shear rate. The purpose of this paper is to optimize the parameters of a co-flow device in order to produce a linear velocity profile in blood samples which would provide a constant shear rate. This is desired as the eventual goal is to use an ultrasonic measurement sensor with the co-flow microfluidic device to analyze red blood cell aggregates. Computational fluid dynamic simulations were performed to model a microfluidic device. The simulation results were verified by µPIV of the experimental microfluidic device. Modifications were made to the geometry and flow rate ratio of the microfluidic device to produce a more linear velocity profile. By using a flow rate ratio of 50:1 of shearing fluid to sheared fluid, we were able to achieve a velocity profile in the blood layer that is approximately linear.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Blood Microfluidic Co-Flow Devices for Dual Measurement\",\"authors\":\"Amit Nayak, C. Armstrong, C. Mavriplis, M. Fenech\",\"doi\":\"10.1109/MeMeA52024.2021.9478718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidics is a prominent field used to analyze small amounts of biological fluids. Co-Flow microfluidic devices can be used to study red blood cell aggregation in blood samples under a controlled shear rate. The purpose of this paper is to optimize the parameters of a co-flow device in order to produce a linear velocity profile in blood samples which would provide a constant shear rate. This is desired as the eventual goal is to use an ultrasonic measurement sensor with the co-flow microfluidic device to analyze red blood cell aggregates. Computational fluid dynamic simulations were performed to model a microfluidic device. The simulation results were verified by µPIV of the experimental microfluidic device. Modifications were made to the geometry and flow rate ratio of the microfluidic device to produce a more linear velocity profile. By using a flow rate ratio of 50:1 of shearing fluid to sheared fluid, we were able to achieve a velocity profile in the blood layer that is approximately linear.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微流体学是用于分析少量生物流体的一个重要领域。共流微流控装置可用于研究受控剪切速率下血液样品中的红细胞聚集。本文的目的是优化共流装置的参数,以便在血液样品中产生线性速度剖面,从而提供恒定的剪切速率。这是理想的,因为最终的目标是使用超声测量传感器与共流微流体装置来分析红细胞聚集体。对微流控装置进行了计算流体动力学模拟。通过实验微流控装置的µPIV对仿真结果进行了验证。对微流控装置的几何形状和流量比进行了修改,以产生更线性的速度分布。通过使用50:1的剪切流体与剪切流体的流速比,我们能够在血液层中获得近似线性的速度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Blood Microfluidic Co-Flow Devices for Dual Measurement
Microfluidics is a prominent field used to analyze small amounts of biological fluids. Co-Flow microfluidic devices can be used to study red blood cell aggregation in blood samples under a controlled shear rate. The purpose of this paper is to optimize the parameters of a co-flow device in order to produce a linear velocity profile in blood samples which would provide a constant shear rate. This is desired as the eventual goal is to use an ultrasonic measurement sensor with the co-flow microfluidic device to analyze red blood cell aggregates. Computational fluid dynamic simulations were performed to model a microfluidic device. The simulation results were verified by µPIV of the experimental microfluidic device. Modifications were made to the geometry and flow rate ratio of the microfluidic device to produce a more linear velocity profile. By using a flow rate ratio of 50:1 of shearing fluid to sheared fluid, we were able to achieve a velocity profile in the blood layer that is approximately linear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML algorithms for the assessment of prescribed physical exercises Measuring the Effect of Rhythmic Auditory Stimuli on Parkinsonian Gait in Challenging Settings A preliminary study on the dynamic characterization of a MEMS microgripper for biomedical applications Gait Parameters of Elderly Subjects in Single-task and Dual-task with three different MIMU set-ups The use of cognitive training and tDCS for the treatment of an high potential subject: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1