基于磁共振图像纹理特征的脑肿瘤类型检测

Yogita K. Dubey, M. Mushrif, Komal Pisar
{"title":"基于磁共振图像纹理特征的脑肿瘤类型检测","authors":"Yogita K. Dubey, M. Mushrif, Komal Pisar","doi":"10.1109/R10-HTC.2018.8629800","DOIUrl":null,"url":null,"abstract":"In this paper, the algorithms for the detection of brain tumor and then classifcation of the tumor into meningioma and glioma are proposed. Firstly, automated method is proposed for skull stripping using mathematical morphology and thresholding. Stationary wavelet transform features, Self-organizing map (SOM) and watershed algorithm are used for the segmentation of brain tumor. Gray level co- occurrence matrix (GLCM) features are extracted from tumor and feed forward neural network is used for classification. Proposed algorithm reported classification accuracy of 95% with the available dataset of real brain images from the hospital.","PeriodicalId":404432,"journal":{"name":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brain Tumor Type Detection Using Texture Features in MR Images\",\"authors\":\"Yogita K. Dubey, M. Mushrif, Komal Pisar\",\"doi\":\"10.1109/R10-HTC.2018.8629800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the algorithms for the detection of brain tumor and then classifcation of the tumor into meningioma and glioma are proposed. Firstly, automated method is proposed for skull stripping using mathematical morphology and thresholding. Stationary wavelet transform features, Self-organizing map (SOM) and watershed algorithm are used for the segmentation of brain tumor. Gray level co- occurrence matrix (GLCM) features are extracted from tumor and feed forward neural network is used for classification. Proposed algorithm reported classification accuracy of 95% with the available dataset of real brain images from the hospital.\",\"PeriodicalId\":404432,\"journal\":{\"name\":\"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC.2018.8629800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2018.8629800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种检测脑肿瘤并将其分类为脑膜瘤和胶质瘤的算法。首先,提出了基于数学形态学和阈值分割的颅骨剥离自动化方法。采用平稳小波变换特征、自组织映射(SOM)和分水岭算法对脑肿瘤进行分割。从肿瘤中提取灰度共生矩阵(GLCM)特征,并采用前馈神经网络进行分类。该算法在医院真实脑图像数据集上的分类准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain Tumor Type Detection Using Texture Features in MR Images
In this paper, the algorithms for the detection of brain tumor and then classifcation of the tumor into meningioma and glioma are proposed. Firstly, automated method is proposed for skull stripping using mathematical morphology and thresholding. Stationary wavelet transform features, Self-organizing map (SOM) and watershed algorithm are used for the segmentation of brain tumor. Gray level co- occurrence matrix (GLCM) features are extracted from tumor and feed forward neural network is used for classification. Proposed algorithm reported classification accuracy of 95% with the available dataset of real brain images from the hospital.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensuring Seamless Connectivity in Internet of Things: The Role of Low Power Lossy Networks Road Navigation System Using Automatic Speech Recognition (ASR) And Natural Language Processing (NLP) A Machine Learning Approach to Suggest Ideal Geographical Location for New Restaurant Establishment Designing Virtual Keyboards for Brain-Computer Interfaces R10-HTC 2018 Author Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1