基于边缘检测和颜色分析的侵入火成岩薄片图像无监督分类

Silvia Joseph, Hamimah Ujir, I. Hipiny
{"title":"基于边缘检测和颜色分析的侵入火成岩薄片图像无监督分类","authors":"Silvia Joseph, Hamimah Ujir, I. Hipiny","doi":"10.1109/ICSIPA.2017.8120669","DOIUrl":null,"url":null,"abstract":"Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis\",\"authors\":\"Silvia Joseph, Hamimah Ujir, I. Hipiny\",\"doi\":\"10.1109/ICSIPA.2017.8120669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

岩石分类是地质研究的基本任务之一。这个过程需要一个人类专家在显微镜下检查取样的薄片图像。在本研究中,我们提出了一种利用显微镜自动化、数字图像采集、边缘检测和颜色分析(直方图)的方法。我们使用安装在传统显微镜上的数码相机从20个标准薄片上收集了60张数字图像。每个图像被分割成有限数量的单元格,形成网格结构。每个单元内像素的边缘和颜色配置文件决定其分类。然后,单个细胞通过多数投票方案确定薄切片图像分类。我们的方法获得了高达90%至100%精度的成功结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis
Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1