AI-FDC:全晶圆厂制程设备健康监测自动化自顶向下系统

Richard Burch, M. Keleher, Kazuki Kunitoshi
{"title":"AI-FDC:全晶圆厂制程设备健康监测自动化自顶向下系统","authors":"Richard Burch, M. Keleher, Kazuki Kunitoshi","doi":"10.1109/ISSM51728.2020.9377500","DOIUrl":null,"url":null,"abstract":"We have developed a novel technique to handle Fault Detection and Classification data for Equipment Health Monitoring. While most techniques are very human intensive, this AI-FDC technique allows for less human interaction by taking advantage of recent advancements in Machine Learning. Raw traces are automatically broken down into windows with consistent characteristics, relevant statistics are automatically calculated based on window characteristics, and anomalous traces are detected by the system without labels. This system will accelerate root cause diagnosis of Equipment Breakdowns and prevent subsequent breakdowns.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-FDC: Automated Top Down System for Fab Wide Process Equipment Health Monitoring\",\"authors\":\"Richard Burch, M. Keleher, Kazuki Kunitoshi\",\"doi\":\"10.1109/ISSM51728.2020.9377500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a novel technique to handle Fault Detection and Classification data for Equipment Health Monitoring. While most techniques are very human intensive, this AI-FDC technique allows for less human interaction by taking advantage of recent advancements in Machine Learning. Raw traces are automatically broken down into windows with consistent characteristics, relevant statistics are automatically calculated based on window characteristics, and anomalous traces are detected by the system without labels. This system will accelerate root cause diagnosis of Equipment Breakdowns and prevent subsequent breakdowns.\",\"PeriodicalId\":270309,\"journal\":{\"name\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM51728.2020.9377500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于设备健康监测的故障检测与分类数据处理方法。虽然大多数技术都是非常人性化的,但这种AI-FDC技术通过利用机器学习的最新进展,允许更少的人机交互。将原始迹线自动分解为特征一致的窗口,根据窗口特征自动计算相关统计量,系统无需标签即可检测异常迹线。该系统将加速设备故障的根本原因诊断,防止后续故障的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-FDC: Automated Top Down System for Fab Wide Process Equipment Health Monitoring
We have developed a novel technique to handle Fault Detection and Classification data for Equipment Health Monitoring. While most techniques are very human intensive, this AI-FDC technique allows for less human interaction by taking advantage of recent advancements in Machine Learning. Raw traces are automatically broken down into windows with consistent characteristics, relevant statistics are automatically calculated based on window characteristics, and anomalous traces are detected by the system without labels. This system will accelerate root cause diagnosis of Equipment Breakdowns and prevent subsequent breakdowns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process Optimization of Trench Field Plate Power MOSFETs with Sequential Phosphorus-Doped Silicon Predicting and considering properties of general polymers using incomplete dataset Digital Transformation's Impact on Smart Manufacturing Etching characteristics of PECVD-prepared SiN films with CF4/D2 and CF4/H2 plasmas at different temperatures Using Quartz Crystal Microbalance to Provide Real-Time Process Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1