Salahaldeen Duraibi, Wasim Alhamdani, Frederick T. Sheldon
{"title":"基于深度神经网络分类的重放欺骗攻击检测","authors":"Salahaldeen Duraibi, Wasim Alhamdani, Frederick T. Sheldon","doi":"10.1109/CSCI51800.2020.00036","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the use of the deep learning approach for replay spoof detection in speaker verification systems. Automatic speaker verifications (ASVs) can be easily spoofed by previously recorded genuine speech. In order to counter the issues of spoofing, detecting spoofing attacks play an important role. Hence, we consider the detection of replay attack spoofing that is the most easily accomplished spoofing attack. In this light, we propose a deep neural network-based (DNN) classifier using a hybrid feature from Mel-frequency cepstral coefficient (MFCC) and constant Q cepstral coefficient (CQCC). Several experiments were conducted on the latest version of ASVspoof 2017 dataset. The results are compared with a base line system that uses the Gaussian mixture model (GMM) classifier with different features that include MFCC, CQCC, and the hybrid feature of the two. The experiment results reveal that the DNN classifier outperforms the conventional GMM classifier. It was found that the hybrid-based features are superior to single features, such as CQCC and MFCC in terms of equal error rate (ERR). In addition, like many previous researchers have found, it turned out that high-frequency regions of speech utterance convey much more discriminative information for replay attack detection.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Replay Spoof Attack Detection using Deep Neural Networks for Classification\",\"authors\":\"Salahaldeen Duraibi, Wasim Alhamdani, Frederick T. Sheldon\",\"doi\":\"10.1109/CSCI51800.2020.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the use of the deep learning approach for replay spoof detection in speaker verification systems. Automatic speaker verifications (ASVs) can be easily spoofed by previously recorded genuine speech. In order to counter the issues of spoofing, detecting spoofing attacks play an important role. Hence, we consider the detection of replay attack spoofing that is the most easily accomplished spoofing attack. In this light, we propose a deep neural network-based (DNN) classifier using a hybrid feature from Mel-frequency cepstral coefficient (MFCC) and constant Q cepstral coefficient (CQCC). Several experiments were conducted on the latest version of ASVspoof 2017 dataset. The results are compared with a base line system that uses the Gaussian mixture model (GMM) classifier with different features that include MFCC, CQCC, and the hybrid feature of the two. The experiment results reveal that the DNN classifier outperforms the conventional GMM classifier. It was found that the hybrid-based features are superior to single features, such as CQCC and MFCC in terms of equal error rate (ERR). In addition, like many previous researchers have found, it turned out that high-frequency regions of speech utterance convey much more discriminative information for replay attack detection.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replay Spoof Attack Detection using Deep Neural Networks for Classification
In this paper, we explore the use of the deep learning approach for replay spoof detection in speaker verification systems. Automatic speaker verifications (ASVs) can be easily spoofed by previously recorded genuine speech. In order to counter the issues of spoofing, detecting spoofing attacks play an important role. Hence, we consider the detection of replay attack spoofing that is the most easily accomplished spoofing attack. In this light, we propose a deep neural network-based (DNN) classifier using a hybrid feature from Mel-frequency cepstral coefficient (MFCC) and constant Q cepstral coefficient (CQCC). Several experiments were conducted on the latest version of ASVspoof 2017 dataset. The results are compared with a base line system that uses the Gaussian mixture model (GMM) classifier with different features that include MFCC, CQCC, and the hybrid feature of the two. The experiment results reveal that the DNN classifier outperforms the conventional GMM classifier. It was found that the hybrid-based features are superior to single features, such as CQCC and MFCC in terms of equal error rate (ERR). In addition, like many previous researchers have found, it turned out that high-frequency regions of speech utterance convey much more discriminative information for replay attack detection.