迭代滤波在非高斯Ornstein-Uhlenbeck随机波动过程瞬时方差参数估计中的应用

Piotr Szczepocki
{"title":"迭代滤波在非高斯Ornstein-Uhlenbeck随机波动过程瞬时方差参数估计中的应用","authors":"Piotr Szczepocki","doi":"10.5604/01.3001.0013.8364","DOIUrl":null,"url":null,"abstract":"The article presents a method for parametric estimation of instantaneous variance in the case of non-Gaussian Ornstein-Uhlenbeck stochastic volatility process by means of the iterated filtering and realized variance estimator. The method is applied to realized variance of S&P500 index data. Empirical application is accompanied with simulation study to examine performance of the estimation technique.\n\n","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Iterated Filtering for Parametric Estimation of Instantaneous Variance in the Case of Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Processes\",\"authors\":\"Piotr Szczepocki\",\"doi\":\"10.5604/01.3001.0013.8364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents a method for parametric estimation of instantaneous variance in the case of non-Gaussian Ornstein-Uhlenbeck stochastic volatility process by means of the iterated filtering and realized variance estimator. The method is applied to realized variance of S&P500 index data. Empirical application is accompanied with simulation study to examine performance of the estimation technique.\\n\\n\",\"PeriodicalId\":357447,\"journal\":{\"name\":\"Przegląd Statystyczny\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przegląd Statystyczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0013.8364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0013.8364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用迭代滤波和实现方差估计器对非高斯Ornstein-Uhlenbeck随机波动过程的瞬时方差进行参数估计的方法。将该方法应用于标准普尔500指数数据的已实现方差。实证应用与仿真研究相结合,检验了估计技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Iterated Filtering for Parametric Estimation of Instantaneous Variance in the Case of Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Processes
The article presents a method for parametric estimation of instantaneous variance in the case of non-Gaussian Ornstein-Uhlenbeck stochastic volatility process by means of the iterated filtering and realized variance estimator. The method is applied to realized variance of S&P500 index data. Empirical application is accompanied with simulation study to examine performance of the estimation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a priori positive information on the results of voting methods Comparison of the accuracy of forecasts bsed on neural networks before and after the outbreak of the COVID-19 pandemic on the example of selected exchange rates Estimation of Yu and Meyer bivariate stochastic volatility model by iterated filtering Sample size in clinical trials – challenges and approaches Alternative investments during turbulent times comparison of dynamic relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1