饱和输入挤出机的RBFNN自适应变结构温度控制算法

Bo Xu, Xiumei Chen, Yufei Qin
{"title":"饱和输入挤出机的RBFNN自适应变结构温度控制算法","authors":"Bo Xu, Xiumei Chen, Yufei Qin","doi":"10.1145/3544109.3544186","DOIUrl":null,"url":null,"abstract":"As an important industrial equipment, extruder has high requirements for temperature control accuracy, interference between temperature zones, limited control input, difficult parameter adjustment and complex controller design. Taking extruder temperature control system as the research object, this paper designs extruder temperature control algorithm under the condition of limited input. The algorithm adopts adaptive neural network to automatically identify the system model and suppress the disturbance through convenient structure control algorithm, at the same time, the neural network is used to compensate the saturated input signal. The simulation results show that the algorithm is reliable.","PeriodicalId":187064,"journal":{"name":"Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The RBFNN Adaptive Variable Structure Temperature Control Algorithm for Extruder with Saturated Input\",\"authors\":\"Bo Xu, Xiumei Chen, Yufei Qin\",\"doi\":\"10.1145/3544109.3544186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important industrial equipment, extruder has high requirements for temperature control accuracy, interference between temperature zones, limited control input, difficult parameter adjustment and complex controller design. Taking extruder temperature control system as the research object, this paper designs extruder temperature control algorithm under the condition of limited input. The algorithm adopts adaptive neural network to automatically identify the system model and suppress the disturbance through convenient structure control algorithm, at the same time, the neural network is used to compensate the saturated input signal. The simulation results show that the algorithm is reliable.\",\"PeriodicalId\":187064,\"journal\":{\"name\":\"Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544109.3544186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544109.3544186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

挤出机作为一种重要的工业设备,其温度控制精度要求高,温度区域之间存在干扰,控制输入有限,参数调整困难,控制器设计复杂。本文以挤出机温度控制系统为研究对象,设计了有限输入条件下的挤出机温度控制算法。该算法采用自适应神经网络对系统模型进行自动识别,并通过方便的结构控制算法对扰动进行抑制,同时利用神经网络对饱和输入信号进行补偿。仿真结果表明,该算法是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The RBFNN Adaptive Variable Structure Temperature Control Algorithm for Extruder with Saturated Input
As an important industrial equipment, extruder has high requirements for temperature control accuracy, interference between temperature zones, limited control input, difficult parameter adjustment and complex controller design. Taking extruder temperature control system as the research object, this paper designs extruder temperature control algorithm under the condition of limited input. The algorithm adopts adaptive neural network to automatically identify the system model and suppress the disturbance through convenient structure control algorithm, at the same time, the neural network is used to compensate the saturated input signal. The simulation results show that the algorithm is reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Mining Model of Internet of Things based on Blockchain Technology Study on the Absorption Capacity of Distribution Network with Distributed Power Supply Based on Improved AFSA Research on Early Warning System of Real Estate Financial Risk Based on Convolutional Neural Network Research on Natural Language Processing Problems Based on LSTM Algorithm Design of a Switchable Frequency Selective Surface Absorber / Reflector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1