基于时空相关聚类的无线传感器网络压缩数据采集方法

Junying Chen, Xiao Xu, J. Wan
{"title":"基于时空相关聚类的无线传感器网络压缩数据采集方法","authors":"Junying Chen, Xiao Xu, J. Wan","doi":"10.1109/ICSENG.2018.8638194","DOIUrl":null,"url":null,"abstract":"To solve the problem of high energy consumption in traditional data-gathering protocols and to balance the network load, a spatiotemporal correlation-based clustering method for compressive data gathering (SCCM-CDG) is proposed. First, we present a mathematical model to measure the spatiotemporal correlation of neighborhood nodes. Second, a spatiotemporal correlation-based clustering method (SCCM) is proposed and then applied to the data-gathering protocol. Sensor nodes within a cluster send a small number of linear projections to cluster heads using compressive sensing theory, and then cluster heads send sample data along the shortest square distance spanning tree among cluster heads and the sink. Results of the simulation and experiment verify the accuracy of the SCCM algorithm, revealing that the SCCM-CDG algorithm can substantially reduce energy consumption, prolong network lifetime, and promote improvements in data recovery at the sink compared with existing compressive sensing-based data-gathering schemes.","PeriodicalId":356324,"journal":{"name":"2018 26th International Conference on Systems Engineering (ICSEng)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressed Data-Gathering Method based on Spatiotemporal Correlation Clustering in Wireless Sensor Networks\",\"authors\":\"Junying Chen, Xiao Xu, J. Wan\",\"doi\":\"10.1109/ICSENG.2018.8638194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of high energy consumption in traditional data-gathering protocols and to balance the network load, a spatiotemporal correlation-based clustering method for compressive data gathering (SCCM-CDG) is proposed. First, we present a mathematical model to measure the spatiotemporal correlation of neighborhood nodes. Second, a spatiotemporal correlation-based clustering method (SCCM) is proposed and then applied to the data-gathering protocol. Sensor nodes within a cluster send a small number of linear projections to cluster heads using compressive sensing theory, and then cluster heads send sample data along the shortest square distance spanning tree among cluster heads and the sink. Results of the simulation and experiment verify the accuracy of the SCCM algorithm, revealing that the SCCM-CDG algorithm can substantially reduce energy consumption, prolong network lifetime, and promote improvements in data recovery at the sink compared with existing compressive sensing-based data-gathering schemes.\",\"PeriodicalId\":356324,\"journal\":{\"name\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENG.2018.8638194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Systems Engineering (ICSEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENG.2018.8638194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决传统数据采集协议能耗高的问题,平衡网络负载,提出了一种基于时空相关的压缩数据采集聚类方法(SCCM-CDG)。首先,我们提出了一个测量邻域节点时空相关性的数学模型。其次,提出了一种基于时空相关的聚类方法,并将其应用于数据采集协议中。集群内的传感器节点利用压缩感知理论向簇头发送少量的线性投影,然后簇头沿着簇头和sink之间的最短平方距离生成树发送样本数据。仿真和实验结果验证了SCCM算法的准确性,表明与现有的基于压缩感知的数据采集方案相比,SCCM- cdg算法可以大幅降低能耗,延长网络寿命,并促进汇处数据恢复的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressed Data-Gathering Method based on Spatiotemporal Correlation Clustering in Wireless Sensor Networks
To solve the problem of high energy consumption in traditional data-gathering protocols and to balance the network load, a spatiotemporal correlation-based clustering method for compressive data gathering (SCCM-CDG) is proposed. First, we present a mathematical model to measure the spatiotemporal correlation of neighborhood nodes. Second, a spatiotemporal correlation-based clustering method (SCCM) is proposed and then applied to the data-gathering protocol. Sensor nodes within a cluster send a small number of linear projections to cluster heads using compressive sensing theory, and then cluster heads send sample data along the shortest square distance spanning tree among cluster heads and the sink. Results of the simulation and experiment verify the accuracy of the SCCM algorithm, revealing that the SCCM-CDG algorithm can substantially reduce energy consumption, prolong network lifetime, and promote improvements in data recovery at the sink compared with existing compressive sensing-based data-gathering schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Essential Skill of Enterprise Architect Practitioners for Digital Era Power usage optimization in multi-UAV common-mission cooperative UAS systems A New Novel Improved Technique for PAPR Reduction in OFDM System Performance Investigation of a PV Emulator Using Current Source and Diode String ICSEng 2018 Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1