Gaetano Patti, G. Muscato, Nunzio Abbate, L. L. Bello
{"title":"摘要:一种面向协作移动机器人团队的实时低数据量协议","authors":"Gaetano Patti, G. Muscato, Nunzio Abbate, L. L. Bello","doi":"10.1109/RTAS.2016.7461328","DOIUrl":null,"url":null,"abstract":"Summary form only given. Applications that involve mobile cooperating robot teams require real-time communications to enable the robots to cooperate and fulfill a common task. In particular, bounded end-to-end delays must be achieved while also ensuring other properties, such as, mobility support and scalability. Commercial-off-the-shelf devices must be used in order to allow for large deployments at affordable costs. Moreover, there is an increasing interest in enabling interactions between robot teams and Wireless Sensor Networks (WSNs) located in the surrounding environment, to pave the way for applications in which the mobile robots act as the mobile sensors of a WSN. This demo shows the implementation on low datarate devices of RoboMAC, a new real-time MAC protocol for the communication between mobile cooperating robots. The contributions of RoboMAC are the following: It enables the integration of robots with WSNs, as it is specifically devised for low data rate communications. It provides support to mobility, thanks to the combination of clustering with a distributed topology management mechanism which is based on the Received Signal Strength Indicator (RSSI) acquired during the communication between nodes. It provides scalable real-time communications thanks to a TDMA-based mechanism combined with multichannel transmissions and clustering. RoboMAC was implemented on the STMicroelectronics STEVAL-IKR002V5 board that is commercially available. The board embeds the SPIRIT1 transceiver that operates at 915MHz, provides a datarate of 250kbps and provide a high radio coverage. The demo will show the videos of two cooperative mobile robot applications. In the first application two robots cooperate to search a radio target which periodically transmits beacons, while in the second application the two robots cooperate in order to maintain the connectivity during the exploration of an area. Moreover during the interactive session several examples of communications will demonstrate how the protocol works and how it can offer bounded latencies (in the order of hundreds of milliseconds) on COTS low data rate devices.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Demo Abstract: A Real-Time Low Datarate Protocol for Cooperative Mobile Robot Teams\",\"authors\":\"Gaetano Patti, G. Muscato, Nunzio Abbate, L. L. Bello\",\"doi\":\"10.1109/RTAS.2016.7461328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Applications that involve mobile cooperating robot teams require real-time communications to enable the robots to cooperate and fulfill a common task. In particular, bounded end-to-end delays must be achieved while also ensuring other properties, such as, mobility support and scalability. Commercial-off-the-shelf devices must be used in order to allow for large deployments at affordable costs. Moreover, there is an increasing interest in enabling interactions between robot teams and Wireless Sensor Networks (WSNs) located in the surrounding environment, to pave the way for applications in which the mobile robots act as the mobile sensors of a WSN. This demo shows the implementation on low datarate devices of RoboMAC, a new real-time MAC protocol for the communication between mobile cooperating robots. The contributions of RoboMAC are the following: It enables the integration of robots with WSNs, as it is specifically devised for low data rate communications. It provides support to mobility, thanks to the combination of clustering with a distributed topology management mechanism which is based on the Received Signal Strength Indicator (RSSI) acquired during the communication between nodes. It provides scalable real-time communications thanks to a TDMA-based mechanism combined with multichannel transmissions and clustering. RoboMAC was implemented on the STMicroelectronics STEVAL-IKR002V5 board that is commercially available. The board embeds the SPIRIT1 transceiver that operates at 915MHz, provides a datarate of 250kbps and provide a high radio coverage. The demo will show the videos of two cooperative mobile robot applications. In the first application two robots cooperate to search a radio target which periodically transmits beacons, while in the second application the two robots cooperate in order to maintain the connectivity during the exploration of an area. Moreover during the interactive session several examples of communications will demonstrate how the protocol works and how it can offer bounded latencies (in the order of hundreds of milliseconds) on COTS low data rate devices.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demo Abstract: A Real-Time Low Datarate Protocol for Cooperative Mobile Robot Teams
Summary form only given. Applications that involve mobile cooperating robot teams require real-time communications to enable the robots to cooperate and fulfill a common task. In particular, bounded end-to-end delays must be achieved while also ensuring other properties, such as, mobility support and scalability. Commercial-off-the-shelf devices must be used in order to allow for large deployments at affordable costs. Moreover, there is an increasing interest in enabling interactions between robot teams and Wireless Sensor Networks (WSNs) located in the surrounding environment, to pave the way for applications in which the mobile robots act as the mobile sensors of a WSN. This demo shows the implementation on low datarate devices of RoboMAC, a new real-time MAC protocol for the communication between mobile cooperating robots. The contributions of RoboMAC are the following: It enables the integration of robots with WSNs, as it is specifically devised for low data rate communications. It provides support to mobility, thanks to the combination of clustering with a distributed topology management mechanism which is based on the Received Signal Strength Indicator (RSSI) acquired during the communication between nodes. It provides scalable real-time communications thanks to a TDMA-based mechanism combined with multichannel transmissions and clustering. RoboMAC was implemented on the STMicroelectronics STEVAL-IKR002V5 board that is commercially available. The board embeds the SPIRIT1 transceiver that operates at 915MHz, provides a datarate of 250kbps and provide a high radio coverage. The demo will show the videos of two cooperative mobile robot applications. In the first application two robots cooperate to search a radio target which periodically transmits beacons, while in the second application the two robots cooperate in order to maintain the connectivity during the exploration of an area. Moreover during the interactive session several examples of communications will demonstrate how the protocol works and how it can offer bounded latencies (in the order of hundreds of milliseconds) on COTS low data rate devices.