生物医学数据分类的最佳模糊逻辑方法

O. Polat
{"title":"生物医学数据分类的最佳模糊逻辑方法","authors":"O. Polat","doi":"10.1109/BIYOMUT.2010.5479731","DOIUrl":null,"url":null,"abstract":"In this study, a fuzzy logic technique for classification of different biomedical dataset is optimized for improving performance. Threshold acceptance algorithm is used for optimization process. The proposed method is tested on heart data set and simulation results show that the optimized fuzzy logic approach provides higher classification accuracy compare with that of unoptimized fuzzy logic structure.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimum fuzzy logic approach for biomedical data classification\",\"authors\":\"O. Polat\",\"doi\":\"10.1109/BIYOMUT.2010.5479731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a fuzzy logic technique for classification of different biomedical dataset is optimized for improving performance. Threshold acceptance algorithm is used for optimization process. The proposed method is tested on heart data set and simulation results show that the optimized fuzzy logic approach provides higher classification accuracy compare with that of unoptimized fuzzy logic structure.\",\"PeriodicalId\":180275,\"journal\":{\"name\":\"2010 15th National Biomedical Engineering Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2010.5479731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对不同生物医学数据集的模糊逻辑分类技术进行了优化,以提高分类性能。优化过程采用阈值接受算法。在心脏数据集上进行了测试,仿真结果表明,优化后的模糊逻辑方法比未优化的模糊逻辑结构具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The optimum fuzzy logic approach for biomedical data classification
In this study, a fuzzy logic technique for classification of different biomedical dataset is optimized for improving performance. Threshold acceptance algorithm is used for optimization process. The proposed method is tested on heart data set and simulation results show that the optimized fuzzy logic approach provides higher classification accuracy compare with that of unoptimized fuzzy logic structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of channel noise on spike propagation in myelinated axons The differences of MR spectroscopic imaging and MR diffusion weighted imaging parameters in different subtypes of grade 3 gliomas Chronic recordings from rat motor cortex for developing neural prostheses Classification of ECG Arrythmia beats with Artificial Neural Networks Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1