环境温度下钙钛矿密度泛函理论分析

Jon Bebeau, A. Takshi
{"title":"环境温度下钙钛矿密度泛函理论分析","authors":"Jon Bebeau, A. Takshi","doi":"10.1117/12.2594937","DOIUrl":null,"url":null,"abstract":"Despite the fast growth of using perovskite materials in solar cells and photo-sensors, there are still many unanswered questions about the processes for their unique electro-optical properties. In this regard, simulation of the material can help for better understanding of the perovskites’ properties. In this study, we have investigated the crystalline structure of methylammonium lead iodide, MAPbI3, perovskite using the density functional theory (DFT). The majority of DFT modeling of perovskite targets the ground state, at 0 K. Analysis at ground state simplifies several quantum mechanical effects and the model results are enlightening. Yet for practical application at ambient temperature, DFT models must include more physical processes which involve making mathematical simplifications and quantum mechanical assumptions to simplify the computations. Here we delved into the practical implication of the move from theory to practical algorithms and tools, identified the range of current computational implications and limitations, the problems of accurately modeling these substances at room temperature, the computational costs, expected results afforded by DFT models for real, practical materials. We have surveyed the required extensions needed to perform DFT on MAPbI3 which necessarily include the temperature modeling, crystal vibrational and frame deformation, phonon action and the novel characteristics of a free MA cation constrained within a Pb-I structure. The developed algorithm for the DFT analysis of perovskite can then be used as a tool for further study of the effect of various factors on the material properties.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density functional theory analysis of perovskite at ambient temperature\",\"authors\":\"Jon Bebeau, A. Takshi\",\"doi\":\"10.1117/12.2594937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the fast growth of using perovskite materials in solar cells and photo-sensors, there are still many unanswered questions about the processes for their unique electro-optical properties. In this regard, simulation of the material can help for better understanding of the perovskites’ properties. In this study, we have investigated the crystalline structure of methylammonium lead iodide, MAPbI3, perovskite using the density functional theory (DFT). The majority of DFT modeling of perovskite targets the ground state, at 0 K. Analysis at ground state simplifies several quantum mechanical effects and the model results are enlightening. Yet for practical application at ambient temperature, DFT models must include more physical processes which involve making mathematical simplifications and quantum mechanical assumptions to simplify the computations. Here we delved into the practical implication of the move from theory to practical algorithms and tools, identified the range of current computational implications and limitations, the problems of accurately modeling these substances at room temperature, the computational costs, expected results afforded by DFT models for real, practical materials. We have surveyed the required extensions needed to perform DFT on MAPbI3 which necessarily include the temperature modeling, crystal vibrational and frame deformation, phonon action and the novel characteristics of a free MA cation constrained within a Pb-I structure. The developed algorithm for the DFT analysis of perovskite can then be used as a tool for further study of the effect of various factors on the material properties.\",\"PeriodicalId\":145218,\"journal\":{\"name\":\"Organic Photonics + Electronics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Photonics + Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2594937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管钙钛矿材料在太阳能电池和光传感器中的应用迅速增长,但由于其独特的光电特性,在加工过程中仍有许多未解之谜。在这方面,材料的模拟可以帮助更好地理解钙钛矿的性质。本文利用密度泛函理论(DFT)研究了碘化铅甲基铵、MAPbI3、钙钛矿的晶体结构。大多数钙钛矿的DFT模型以0 K时的基态为目标。基态分析简化了几种量子力学效应,模型结果具有启发性。然而,对于环境温度下的实际应用,DFT模型必须包含更多的物理过程,这些物理过程涉及数学简化和量子力学假设以简化计算。在这里,我们深入研究了从理论到实际算法和工具的实际含义,确定了当前计算含义和局限性的范围,在室温下准确建模这些物质的问题,计算成本,DFT模型为真实的实际材料提供的预期结果。我们调查了在MAPbI3上执行DFT所需的扩展,其中必然包括温度建模,晶体振动和框架变形,声子作用以及约束在Pb-I结构中的自由MA阳离子的新特性。所开发的钙钛矿DFT分析算法可作为进一步研究各种因素对材料性能影响的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density functional theory analysis of perovskite at ambient temperature
Despite the fast growth of using perovskite materials in solar cells and photo-sensors, there are still many unanswered questions about the processes for their unique electro-optical properties. In this regard, simulation of the material can help for better understanding of the perovskites’ properties. In this study, we have investigated the crystalline structure of methylammonium lead iodide, MAPbI3, perovskite using the density functional theory (DFT). The majority of DFT modeling of perovskite targets the ground state, at 0 K. Analysis at ground state simplifies several quantum mechanical effects and the model results are enlightening. Yet for practical application at ambient temperature, DFT models must include more physical processes which involve making mathematical simplifications and quantum mechanical assumptions to simplify the computations. Here we delved into the practical implication of the move from theory to practical algorithms and tools, identified the range of current computational implications and limitations, the problems of accurately modeling these substances at room temperature, the computational costs, expected results afforded by DFT models for real, practical materials. We have surveyed the required extensions needed to perform DFT on MAPbI3 which necessarily include the temperature modeling, crystal vibrational and frame deformation, phonon action and the novel characteristics of a free MA cation constrained within a Pb-I structure. The developed algorithm for the DFT analysis of perovskite can then be used as a tool for further study of the effect of various factors on the material properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1