基于分水岭聚类的改进无监督聚类

Sai Venu Gopal Lolla, L. L. Hoberock
{"title":"基于分水岭聚类的改进无监督聚类","authors":"Sai Venu Gopal Lolla, L. L. Hoberock","doi":"10.1109/ICMLA.2010.44","DOIUrl":null,"url":null,"abstract":"This paper improves upon an existing Watershed algorithm-based clustering method. The existing method uses an experimentally determined parameter to construct a density function. A better method for evaluating the cell/window size (used in the construction of the density function) is proposed, eliminating the need for arbitrary parameters. The algorithm has been tested on both published and unpublished synthetic data, and the results demonstrate that the proposed approach is able to accurately estimate the number of clusters present in the data.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Unsupervised Clustering over Watershed-Based Clustering\",\"authors\":\"Sai Venu Gopal Lolla, L. L. Hoberock\",\"doi\":\"10.1109/ICMLA.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper improves upon an existing Watershed algorithm-based clustering method. The existing method uses an experimentally determined parameter to construct a density function. A better method for evaluating the cell/window size (used in the construction of the density function) is proposed, eliminating the need for arbitrary parameters. The algorithm has been tested on both published and unpublished synthetic data, and the results demonstrate that the proposed approach is able to accurately estimate the number of clusters present in the data.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文改进了现有的基于Watershed算法的聚类方法。现有的方法使用实验确定的参数来构造密度函数。提出了一种更好的方法来评估单元/窗口大小(用于密度函数的构造),消除了对任意参数的需要。该算法在已发表和未发表的合成数据上进行了测试,结果表明该方法能够准确地估计数据中存在的聚类数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Unsupervised Clustering over Watershed-Based Clustering
This paper improves upon an existing Watershed algorithm-based clustering method. The existing method uses an experimentally determined parameter to construct a density function. A better method for evaluating the cell/window size (used in the construction of the density function) is proposed, eliminating the need for arbitrary parameters. The algorithm has been tested on both published and unpublished synthetic data, and the results demonstrate that the proposed approach is able to accurately estimate the number of clusters present in the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1