使用增量聚类发现规则的移动对象组

Sigal Elnekave, Mark Last, O. Maimon, Y. Ben-Shimol, H. Einsiedler, M. Friedman, Matthias Siebert
{"title":"使用增量聚类发现规则的移动对象组","authors":"Sigal Elnekave, Mark Last, O. Maimon, Y. Ben-Shimol, H. Einsiedler, M. Friedman, Matthias Siebert","doi":"10.1109/WPNC.2008.4510375","DOIUrl":null,"url":null,"abstract":"As technology advances, detailed data on the position of moving objects, such as humans and vehicles is available. In order to discover groups of mobile objects that usually move in similar ways we propose an incremental clustering algorithm that clusters mobile objects according to similarity of their movement patterns. The proposed clustering algorithm uses a new, \"data-amount-based\" similarity measure between mobile trajectories. The clustering algorithm is evaluated on two spatio-temporal datasets using clustering validity measures.","PeriodicalId":277539,"journal":{"name":"2008 5th Workshop on Positioning, Navigation and Communication","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Discovering regular groups of mobile objects using incremental clustering\",\"authors\":\"Sigal Elnekave, Mark Last, O. Maimon, Y. Ben-Shimol, H. Einsiedler, M. Friedman, Matthias Siebert\",\"doi\":\"10.1109/WPNC.2008.4510375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As technology advances, detailed data on the position of moving objects, such as humans and vehicles is available. In order to discover groups of mobile objects that usually move in similar ways we propose an incremental clustering algorithm that clusters mobile objects according to similarity of their movement patterns. The proposed clustering algorithm uses a new, \\\"data-amount-based\\\" similarity measure between mobile trajectories. The clustering algorithm is evaluated on two spatio-temporal datasets using clustering validity measures.\",\"PeriodicalId\":277539,\"journal\":{\"name\":\"2008 5th Workshop on Positioning, Navigation and Communication\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th Workshop on Positioning, Navigation and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2008.4510375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2008.4510375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着技术的进步,移动物体(如人类和车辆)的位置的详细数据是可用的。为了发现通常以相似方式移动的移动对象组,我们提出了一种增量聚类算法,该算法根据移动对象的运动模式相似性对其进行聚类。提出的聚类算法在移动轨迹之间使用了一种新的“基于数据量”的相似性度量。利用聚类有效性度量对两个时空数据集进行了聚类算法评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering regular groups of mobile objects using incremental clustering
As technology advances, detailed data on the position of moving objects, such as humans and vehicles is available. In order to discover groups of mobile objects that usually move in similar ways we propose an incremental clustering algorithm that clusters mobile objects according to similarity of their movement patterns. The proposed clustering algorithm uses a new, "data-amount-based" similarity measure between mobile trajectories. The clustering algorithm is evaluated on two spatio-temporal datasets using clustering validity measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the scalability of a novel WLAN positioning system based on time of arrival measurements Integration of foot-mounted inertial sensors into a Bayesian location estimation framework Fusion of an uncalibrated camera with velocity information for distance measurement from a moving camera on highways Stitching orders in patch-and-stitch localization algorithms for wireless sensor networks Game-theoretical Relay Selection strategy for geographic routing in Multi-hop WSNs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1