Möbius:具有丰富原语的高性能事务性SSD

Wei Shi, Dongsheng Wang, Zhanye Wang, Dapeng Ju
{"title":"Möbius:具有丰富原语的高性能事务性SSD","authors":"Wei Shi, Dongsheng Wang, Zhanye Wang, Dapeng Ju","doi":"10.1109/MSST.2014.6855535","DOIUrl":null,"url":null,"abstract":"Providing transactional primitives of NAND flash based solid state disks (SSDs) have demonstrated a great potential for high performance transaction processing and relieving software complexity. Similar with software solutions like write-ahead logging (WAL) and shadow paging, transactional SSD has two parts of overhead which include: 1) write overhead under normal condition, and 2) recovery overhead after power failures. Prior transactional SSD designs utilize out-of-band (OOB) area in flash pages to store transaction information to reduce the first part of overhead. However, they are required to scan a large part of or even whole SSD after power failures to abort unfinished transactions. Another limitation of prior approaches is the unicity of transactional primitive they provided. In this paper, we propose a new transactional SSD design named Möbius. Möbius provides different types of transactional primitives to support static and dynamic transactions separately. Möbius flash translation layer (mFTL), which combines normal FTL with transaction processing by storing mapping and transaction information together in a physical flash page as atom inode. By amortizing the cost of transaction processing with FTL persistence, MFTL achieve high performance in normal condition and does not increase write amplification ratio. After power failures, Möbius can leverage atom inode to eliminate unnecessary scanning and recover quickly. We implemented a prototype of Möbius and compare it with other state-of-art transactional SSD designs. Experimental results show that Möbius can at most 67% outperform in transaction throughput (TPS) and 29 times outperform in recovery time while still have similar or even better write amphfication ratio comparing with prior hardware approaches.","PeriodicalId":188071,"journal":{"name":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Möbius: A high performance transactional SSD with rich primitives\",\"authors\":\"Wei Shi, Dongsheng Wang, Zhanye Wang, Dapeng Ju\",\"doi\":\"10.1109/MSST.2014.6855535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing transactional primitives of NAND flash based solid state disks (SSDs) have demonstrated a great potential for high performance transaction processing and relieving software complexity. Similar with software solutions like write-ahead logging (WAL) and shadow paging, transactional SSD has two parts of overhead which include: 1) write overhead under normal condition, and 2) recovery overhead after power failures. Prior transactional SSD designs utilize out-of-band (OOB) area in flash pages to store transaction information to reduce the first part of overhead. However, they are required to scan a large part of or even whole SSD after power failures to abort unfinished transactions. Another limitation of prior approaches is the unicity of transactional primitive they provided. In this paper, we propose a new transactional SSD design named Möbius. Möbius provides different types of transactional primitives to support static and dynamic transactions separately. Möbius flash translation layer (mFTL), which combines normal FTL with transaction processing by storing mapping and transaction information together in a physical flash page as atom inode. By amortizing the cost of transaction processing with FTL persistence, MFTL achieve high performance in normal condition and does not increase write amplification ratio. After power failures, Möbius can leverage atom inode to eliminate unnecessary scanning and recover quickly. We implemented a prototype of Möbius and compare it with other state-of-art transactional SSD designs. Experimental results show that Möbius can at most 67% outperform in transaction throughput (TPS) and 29 times outperform in recovery time while still have similar or even better write amphfication ratio comparing with prior hardware approaches.\",\"PeriodicalId\":188071,\"journal\":{\"name\":\"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSST.2014.6855535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 30th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2014.6855535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提供基于NAND闪存的固态磁盘(ssd)的事务原语已经证明了高性能事务处理和减轻软件复杂性的巨大潜力。与预写日志(write-ahead logging, WAL)和影子分页等软件解决方案类似,事务性SSD有两部分开销,包括:1)正常情况下的写入开销,以及2)电源故障后的恢复开销。以前的事务性SSD设计利用flash页面中的带外(OOB)区域来存储事务信息,以减少第一部分开销。但是,它们需要在电源故障后扫描大部分甚至整个SSD,以中止未完成的事务。先前方法的另一个限制是它们提供的事务原语的唯一性。在本文中,我们提出了一种新的事务性SSD设计,命名为Möbius。Möbius提供了不同类型的事务原语,分别支持静态和动态事务。Möbius flash翻译层(mFTL),它通过将映射和事务信息作为原子inode一起存储在物理flash页中,将普通的FTL与事务处理结合起来。通过用FTL持久化来平摊事务处理的成本,MFTL在正常情况下实现了高性能,且不增加写放大比。在发生电源故障后,Möbius可以利用原子索引节点来消除不必要的扫描并快速恢复。我们实现了Möbius的原型,并将其与其他最先进的事务性SSD设计进行比较。实验结果表明,Möbius在事务吞吐量(TPS)和恢复时间方面的性能分别比之前的硬件方法高出67%和29倍,同时仍然具有相似甚至更好的写入放大率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Möbius: A high performance transactional SSD with rich primitives
Providing transactional primitives of NAND flash based solid state disks (SSDs) have demonstrated a great potential for high performance transaction processing and relieving software complexity. Similar with software solutions like write-ahead logging (WAL) and shadow paging, transactional SSD has two parts of overhead which include: 1) write overhead under normal condition, and 2) recovery overhead after power failures. Prior transactional SSD designs utilize out-of-band (OOB) area in flash pages to store transaction information to reduce the first part of overhead. However, they are required to scan a large part of or even whole SSD after power failures to abort unfinished transactions. Another limitation of prior approaches is the unicity of transactional primitive they provided. In this paper, we propose a new transactional SSD design named Möbius. Möbius provides different types of transactional primitives to support static and dynamic transactions separately. Möbius flash translation layer (mFTL), which combines normal FTL with transaction processing by storing mapping and transaction information together in a physical flash page as atom inode. By amortizing the cost of transaction processing with FTL persistence, MFTL achieve high performance in normal condition and does not increase write amplification ratio. After power failures, Möbius can leverage atom inode to eliminate unnecessary scanning and recover quickly. We implemented a prototype of Möbius and compare it with other state-of-art transactional SSD designs. Experimental results show that Möbius can at most 67% outperform in transaction throughput (TPS) and 29 times outperform in recovery time while still have similar or even better write amphfication ratio comparing with prior hardware approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation of behavioral hard disk drive access time models Advanced magnetic tape technology for linear tape systems: Barium ferrite technology beyond the limitation of metal particulate media NAND flash architectures reducing write amplification through multi-write codes HiSMRfs: A high performance file system for shingled storage array Anode: Empirical detection of performance problems in storage systems using time-series analysis of periodic measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1