{"title":"基于骨架的生成对抗网络,用于字体形状风格转移:从一些字符中学习文本样式,并将样式转移到任何看不见的字符","authors":"Thanaphon Thanusan, K. Patanukhom","doi":"10.1145/3596286.3596288","DOIUrl":null,"url":null,"abstract":"This paper presents a new font shape style transfer technique that employs a generative adversarial network (GAN) and skeleton-based input feature maps to modify a target text to match a target font shape while retaining the original text content. Our GAN model is modified from a Shape-Matching GAN which utilizes a StyleNet generator and a PatchGAN discriminator. Rather than using a base-font character images as input to the generator like other existing font transfer models, we utilize the proposed skeleton-based features as input. The experimental results show that our model can produce the unseen characters in the desired font style better than an existing method.","PeriodicalId":208318,"journal":{"name":"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeleton-based Generative Adversarial Networks for Font Shape Style Transfer: Learning text style from some characters and transferring the style to any unseen characters\",\"authors\":\"Thanaphon Thanusan, K. Patanukhom\",\"doi\":\"10.1145/3596286.3596288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new font shape style transfer technique that employs a generative adversarial network (GAN) and skeleton-based input feature maps to modify a target text to match a target font shape while retaining the original text content. Our GAN model is modified from a Shape-Matching GAN which utilizes a StyleNet generator and a PatchGAN discriminator. Rather than using a base-font character images as input to the generator like other existing font transfer models, we utilize the proposed skeleton-based features as input. The experimental results show that our model can produce the unseen characters in the desired font style better than an existing method.\",\"PeriodicalId\":208318,\"journal\":{\"name\":\"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596286.3596288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596286.3596288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Skeleton-based Generative Adversarial Networks for Font Shape Style Transfer: Learning text style from some characters and transferring the style to any unseen characters
This paper presents a new font shape style transfer technique that employs a generative adversarial network (GAN) and skeleton-based input feature maps to modify a target text to match a target font shape while retaining the original text content. Our GAN model is modified from a Shape-Matching GAN which utilizes a StyleNet generator and a PatchGAN discriminator. Rather than using a base-font character images as input to the generator like other existing font transfer models, we utilize the proposed skeleton-based features as input. The experimental results show that our model can produce the unseen characters in the desired font style better than an existing method.