基于fpga可穿戴设备的救援行动中心血管并发症的人工智能时间优化检测

Aniebiet Micheal Ezekiel, R. Obermaisser
{"title":"基于fpga可穿戴设备的救援行动中心血管并发症的人工智能时间优化检测","authors":"Aniebiet Micheal Ezekiel, R. Obermaisser","doi":"10.1109/HORA58378.2023.10155786","DOIUrl":null,"url":null,"abstract":"Recent research on Artificial Neural Networks (ANNs) has shown significant improvement in machine learning over traditional algorithms in many disciplines. This paper contributes to the advances in medical science and AI technologies by exploring this promising technology for real-time cardiovascular complication detection and resuscitation during rescue missions. Previous studies have relied on cloud-based computing or specialized hardware such as graphics processing units (GPUs), which can be expensive and require significant power consumption. Additionally, existing AI models are often not optimized for low-latency processing, hindering their real-time applications. This study proposes a PyTorch-based ANN model with time optimization techniques on the field-programmable gate arrays (FPGAs) hardware platform, providing data privacy and hardware security. Our approach includes intermediate layer saving and layer parameter reuse, reducing computational complexity and memory requirements while maintaining accuracy. The prototype wearable utilizes a Trenz Electronics TE0802 FPGA board with custom PYNQ-Linux software, providing a low-cost, low-power, and high-performance hardware platform. Using the Apache TVM toolchain, our ANN model predicts cardiovascular disease risk and aids rescuers in making rapid and precise clinical decisions. The results demonstrate 95.9% accuracy in detecting cardiovascular complications, with an average execution time of 41.99ms using TVM. Additionally, our time optimization technique achieves reduced inference times of 33%, 55%, and 79% for reusing the saved output files of layers 1, 2, and 3, respectively, as validated through simulations and experiments.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Optimized Detection of Cardiovascular Complications with Artificial Intelligence in Rescue Operations using FPGA-based Wearable\",\"authors\":\"Aniebiet Micheal Ezekiel, R. Obermaisser\",\"doi\":\"10.1109/HORA58378.2023.10155786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on Artificial Neural Networks (ANNs) has shown significant improvement in machine learning over traditional algorithms in many disciplines. This paper contributes to the advances in medical science and AI technologies by exploring this promising technology for real-time cardiovascular complication detection and resuscitation during rescue missions. Previous studies have relied on cloud-based computing or specialized hardware such as graphics processing units (GPUs), which can be expensive and require significant power consumption. Additionally, existing AI models are often not optimized for low-latency processing, hindering their real-time applications. This study proposes a PyTorch-based ANN model with time optimization techniques on the field-programmable gate arrays (FPGAs) hardware platform, providing data privacy and hardware security. Our approach includes intermediate layer saving and layer parameter reuse, reducing computational complexity and memory requirements while maintaining accuracy. The prototype wearable utilizes a Trenz Electronics TE0802 FPGA board with custom PYNQ-Linux software, providing a low-cost, low-power, and high-performance hardware platform. Using the Apache TVM toolchain, our ANN model predicts cardiovascular disease risk and aids rescuers in making rapid and precise clinical decisions. The results demonstrate 95.9% accuracy in detecting cardiovascular complications, with an average execution time of 41.99ms using TVM. Additionally, our time optimization technique achieves reduced inference times of 33%, 55%, and 79% for reusing the saved output files of layers 1, 2, and 3, respectively, as validated through simulations and experiments.\",\"PeriodicalId\":247679,\"journal\":{\"name\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA58378.2023.10155786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10155786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近对人工神经网络(ANNs)的研究表明,机器学习在许多学科上都比传统算法有了显著的进步。本文通过探索这一有前景的技术在救援任务中实时检测心血管并发症和复苏,为医学科学和人工智能技术的进步做出贡献。以前的研究依赖于基于云的计算或专门的硬件,如图形处理单元(gpu),这可能是昂贵的,需要大量的电力消耗。此外,现有的人工智能模型通常没有针对低延迟处理进行优化,从而阻碍了它们的实时应用。本研究在现场可编程门阵列(fpga)硬件平台上提出了一种基于pytorch的神经网络模型和时间优化技术,提供了数据隐私和硬件安全。我们的方法包括中间层保存和层参数重用,在保持精度的同时降低了计算复杂度和内存需求。原型可穿戴设备采用Trenz Electronics的TE0802 FPGA板和定制的PYNQ-Linux软件,提供低成本、低功耗和高性能的硬件平台。使用Apache TVM工具链,我们的人工神经网络模型预测心血管疾病风险,并帮助救援人员做出快速准确的临床决策。结果表明,TVM检测心血管并发症的准确率为95.9%,平均执行时间为41.99ms。此外,我们的时间优化技术通过模拟和实验验证,在重用第1层、第2层和第3层保存的输出文件时,分别减少了33%、55%和79%的推理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Optimized Detection of Cardiovascular Complications with Artificial Intelligence in Rescue Operations using FPGA-based Wearable
Recent research on Artificial Neural Networks (ANNs) has shown significant improvement in machine learning over traditional algorithms in many disciplines. This paper contributes to the advances in medical science and AI technologies by exploring this promising technology for real-time cardiovascular complication detection and resuscitation during rescue missions. Previous studies have relied on cloud-based computing or specialized hardware such as graphics processing units (GPUs), which can be expensive and require significant power consumption. Additionally, existing AI models are often not optimized for low-latency processing, hindering their real-time applications. This study proposes a PyTorch-based ANN model with time optimization techniques on the field-programmable gate arrays (FPGAs) hardware platform, providing data privacy and hardware security. Our approach includes intermediate layer saving and layer parameter reuse, reducing computational complexity and memory requirements while maintaining accuracy. The prototype wearable utilizes a Trenz Electronics TE0802 FPGA board with custom PYNQ-Linux software, providing a low-cost, low-power, and high-performance hardware platform. Using the Apache TVM toolchain, our ANN model predicts cardiovascular disease risk and aids rescuers in making rapid and precise clinical decisions. The results demonstrate 95.9% accuracy in detecting cardiovascular complications, with an average execution time of 41.99ms using TVM. Additionally, our time optimization technique achieves reduced inference times of 33%, 55%, and 79% for reusing the saved output files of layers 1, 2, and 3, respectively, as validated through simulations and experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Urban Sounds with PSO and WO Based Feature Selection Methods Modeling a system determining the fastest way to get from one point to another by public transport NNA and Activation Equation-Based Prediction of New COVID-19 Infections Plaka tanıma sistemleri ve hibrit bir sistem önerisi Color Image Encryption Using a Sine Variation of the Logistic Map for S-Box and Key Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1