基于纹理算子的ELTP数字图像拼接检测

Vikas Srivastava, S. Yadav
{"title":"基于纹理算子的ELTP数字图像拼接检测","authors":"Vikas Srivastava, S. Yadav","doi":"10.1109/SMART50582.2020.9337095","DOIUrl":null,"url":null,"abstract":"Social networking sites play a significant role in news viral. A lot of information is fake. Image editing tools play an essential role in the easy availability of these tools and software. So image authentication is the need of the time. In this paper, we proposed a texture-based image splicing detection, ELTP (Enhanced local ternary pattern) used for feature extraction, which gives us a better response than LBP. The local ternary pattern used ternary value (-1, 0, 1) code for assessment, advanced to LBP binary value code. ELTP is more sensitive compare to noise. In our proposed technique, first, we convert the RGB image into YCbCr, and the chrominance component used for feature extraction. In feature extraction, first, we implement a standard deviation filter to highlight the abrupt change in the image and ELTP to extract the features. SVM is used as a classifier gives better to some of the states of the art method.","PeriodicalId":129946,"journal":{"name":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Texture Operator based Digital Image Splicing Detection using ELTP Technique\",\"authors\":\"Vikas Srivastava, S. Yadav\",\"doi\":\"10.1109/SMART50582.2020.9337095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networking sites play a significant role in news viral. A lot of information is fake. Image editing tools play an essential role in the easy availability of these tools and software. So image authentication is the need of the time. In this paper, we proposed a texture-based image splicing detection, ELTP (Enhanced local ternary pattern) used for feature extraction, which gives us a better response than LBP. The local ternary pattern used ternary value (-1, 0, 1) code for assessment, advanced to LBP binary value code. ELTP is more sensitive compare to noise. In our proposed technique, first, we convert the RGB image into YCbCr, and the chrominance component used for feature extraction. In feature extraction, first, we implement a standard deviation filter to highlight the abrupt change in the image and ELTP to extract the features. SVM is used as a classifier gives better to some of the states of the art method.\",\"PeriodicalId\":129946,\"journal\":{\"name\":\"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART50582.2020.9337095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART50582.2020.9337095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交网站在新闻传播中扮演着重要的角色。很多信息都是假的。图像编辑工具在这些工具和软件的易用性中起着至关重要的作用。因此,图像认证是时代的需要。在本文中,我们提出了一种基于纹理的图像拼接检测,ELTP (Enhanced local ternary pattern,增强局部三元模式)用于特征提取,它比LBP给出了更好的响应。局部三进制模式采用三进制值(- 1,0,1)码进行评估,进阶为LBP二进制值码。ELTP比噪声更敏感。在我们提出的技术中,我们首先将RGB图像转换为YCbCr,并将色度分量用于特征提取。在特征提取方面,我们首先实现了标准偏差滤波器来突出图像中的突变,并实现了ELTP来提取特征。支持向量机作为一种分类器,给出了较好的一些最新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Texture Operator based Digital Image Splicing Detection using ELTP Technique
Social networking sites play a significant role in news viral. A lot of information is fake. Image editing tools play an essential role in the easy availability of these tools and software. So image authentication is the need of the time. In this paper, we proposed a texture-based image splicing detection, ELTP (Enhanced local ternary pattern) used for feature extraction, which gives us a better response than LBP. The local ternary pattern used ternary value (-1, 0, 1) code for assessment, advanced to LBP binary value code. ELTP is more sensitive compare to noise. In our proposed technique, first, we convert the RGB image into YCbCr, and the chrominance component used for feature extraction. In feature extraction, first, we implement a standard deviation filter to highlight the abrupt change in the image and ELTP to extract the features. SVM is used as a classifier gives better to some of the states of the art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oral Disease Detection using Neural Network A Review on Effectiveness of Artificial Intelligence Techniques in the Detection of COVID-19 Accident Avoidance Simulation using SUMO Gesture-Based Model of Mixed Reality Human-Computer Interface The Survey of Digital Image Analysis with Artificial Intelligence- DCNN Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1