面向新闻的多媒体搜索在多个社会网络

Katerina Iliakopoulou, S. Papadopoulos, Y. Kompatsiaris
{"title":"面向新闻的多媒体搜索在多个社会网络","authors":"Katerina Iliakopoulou, S. Papadopoulos, Y. Kompatsiaris","doi":"10.1109/CBMI.2015.7153612","DOIUrl":null,"url":null,"abstract":"The paper explores the problem of focused multimedia search over multiple social media sharing platforms such as Twitter and Facebook. A multi-step multimedia retrieval framework is presented that collects relevant and diverse multimedia content from multiple social media sources given an input news story or event of interest. The framework utilizes a novel query formulation method in combination with relevance prediction. The query formulation method relies on the construction of a graph of keywords for generating refined queries about the event/news story of interest based on the results of a firststep high precision query. Relevance prediction is based on supervised learning using 12 features computed from the content (text, visual) and social context (popularity, publication time) of posted items. A study is carried out on 20 real-world events and breaking news stories, using six social sources as input, and demonstrating the effectiveness of the proposed framework to collect and aggregate relevant high-quality media content from multiple social sources.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"News-oriented multimedia search over multiple social networks\",\"authors\":\"Katerina Iliakopoulou, S. Papadopoulos, Y. Kompatsiaris\",\"doi\":\"10.1109/CBMI.2015.7153612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper explores the problem of focused multimedia search over multiple social media sharing platforms such as Twitter and Facebook. A multi-step multimedia retrieval framework is presented that collects relevant and diverse multimedia content from multiple social media sources given an input news story or event of interest. The framework utilizes a novel query formulation method in combination with relevance prediction. The query formulation method relies on the construction of a graph of keywords for generating refined queries about the event/news story of interest based on the results of a firststep high precision query. Relevance prediction is based on supervised learning using 12 features computed from the content (text, visual) and social context (popularity, publication time) of posted items. A study is carried out on 20 real-world events and breaking news stories, using six social sources as input, and demonstrating the effectiveness of the proposed framework to collect and aggregate relevant high-quality media content from multiple social sources.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了在多个社交媒体共享平台(如Twitter和Facebook)上集中多媒体搜索的问题。提出了一个多步骤多媒体检索框架,该框架从多个社交媒体来源收集相关的和不同的多媒体内容,给定输入的新闻故事或感兴趣的事件。该框架结合相关性预测,采用了一种新颖的查询表述方法。查询公式方法依赖于基于第一步高精度查询的结果生成关于感兴趣的事件/新闻故事的精细查询的关键字图的构造。相关性预测基于监督学习,使用从发布内容(文本、视觉)和社会背景(流行程度、发布时间)中计算出的12个特征。通过对20个现实世界事件和突发新闻故事的研究,使用6个社会来源作为输入,并证明了所提出的框架在从多个社会来源收集和聚合相关高质量媒体内容方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
News-oriented multimedia search over multiple social networks
The paper explores the problem of focused multimedia search over multiple social media sharing platforms such as Twitter and Facebook. A multi-step multimedia retrieval framework is presented that collects relevant and diverse multimedia content from multiple social media sources given an input news story or event of interest. The framework utilizes a novel query formulation method in combination with relevance prediction. The query formulation method relies on the construction of a graph of keywords for generating refined queries about the event/news story of interest based on the results of a firststep high precision query. Relevance prediction is based on supervised learning using 12 features computed from the content (text, visual) and social context (popularity, publication time) of posted items. A study is carried out on 20 real-world events and breaking news stories, using six social sources as input, and demonstrating the effectiveness of the proposed framework to collect and aggregate relevant high-quality media content from multiple social sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1