{"title":"标签、分段、特征:预测工程的跨领域框架","authors":"James Max Kanter, O. Gillespie, K. Veeramachaneni","doi":"10.1109/DSAA.2016.54","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce \"prediction engineering\" as a formal step in the predictive modeling process. We define a generalizable 3 part framework — Label, Segment, Featurize (L-S-F) — to address the growing demand for predictive models. The framework provides abstractions for data scientists to customize the process to unique prediction problems. We describe how to apply the L-S-F framework to characteristic problems in 2 domains and demonstrate an implementation over 5 unique prediction problems defined on a dataset of crowdfunding projects from DonorsChoose.org. The results demonstrate how the L-S-F framework complements existing tools to allow us to rapidly build and evaluate 26 distinct predictive models. L-S-F enables development of models that provide value to all parties involved (donors, teachers, and people running the platform).","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Label, Segment, Featurize: A Cross Domain Framework for Prediction Engineering\",\"authors\":\"James Max Kanter, O. Gillespie, K. Veeramachaneni\",\"doi\":\"10.1109/DSAA.2016.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce \\\"prediction engineering\\\" as a formal step in the predictive modeling process. We define a generalizable 3 part framework — Label, Segment, Featurize (L-S-F) — to address the growing demand for predictive models. The framework provides abstractions for data scientists to customize the process to unique prediction problems. We describe how to apply the L-S-F framework to characteristic problems in 2 domains and demonstrate an implementation over 5 unique prediction problems defined on a dataset of crowdfunding projects from DonorsChoose.org. The results demonstrate how the L-S-F framework complements existing tools to allow us to rapidly build and evaluate 26 distinct predictive models. L-S-F enables development of models that provide value to all parties involved (donors, teachers, and people running the platform).\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Label, Segment, Featurize: A Cross Domain Framework for Prediction Engineering
In this paper, we introduce "prediction engineering" as a formal step in the predictive modeling process. We define a generalizable 3 part framework — Label, Segment, Featurize (L-S-F) — to address the growing demand for predictive models. The framework provides abstractions for data scientists to customize the process to unique prediction problems. We describe how to apply the L-S-F framework to characteristic problems in 2 domains and demonstrate an implementation over 5 unique prediction problems defined on a dataset of crowdfunding projects from DonorsChoose.org. The results demonstrate how the L-S-F framework complements existing tools to allow us to rapidly build and evaluate 26 distinct predictive models. L-S-F enables development of models that provide value to all parties involved (donors, teachers, and people running the platform).