数据采集中可变随机欠采样概率模式的医学图像匹配

Jinseong Jang, Taejoon Eo, Min-Oh Kim, N. Choi, Dongyup Han, Donghyun Kim, D. Hwang
{"title":"数据采集中可变随机欠采样概率模式的医学图像匹配","authors":"Jinseong Jang, Taejoon Eo, Min-Oh Kim, N. Choi, Dongyup Han, Donghyun Kim, D. Hwang","doi":"10.1109/ELINFOCOM.2014.6914453","DOIUrl":null,"url":null,"abstract":"This paper proposes a randomized variable probability pattern in under-sampling acquisition for medical image matching which is a method that can perform the quantitative analysis of tissue parameters. For high-speed estimation of tissue parameters, random under-sampling with less than the Nyquist rate in k-space is required. This study presents an accurate parameter mapping method for under-sampled data by using various randomized probability pattern. In comparison to the fixed probability pattern, the proposed method shows improved estimation results with reduced artifacts such as ghosting effects due to the undersampling scheme.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Medical image matching using variable randomized undersampling probability pattern in data acquisition\",\"authors\":\"Jinseong Jang, Taejoon Eo, Min-Oh Kim, N. Choi, Dongyup Han, Donghyun Kim, D. Hwang\",\"doi\":\"10.1109/ELINFOCOM.2014.6914453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a randomized variable probability pattern in under-sampling acquisition for medical image matching which is a method that can perform the quantitative analysis of tissue parameters. For high-speed estimation of tissue parameters, random under-sampling with less than the Nyquist rate in k-space is required. This study presents an accurate parameter mapping method for under-sampled data by using various randomized probability pattern. In comparison to the fixed probability pattern, the proposed method shows improved estimation results with reduced artifacts such as ghosting effects due to the undersampling scheme.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种随机变概率模式的医学图像匹配欠采样采集方法,该方法可以对组织参数进行定量分析。对于组织参数的高速估计,需要k空间中小于奈奎斯特率的随机欠采样。本文提出了一种利用各种随机概率模式对欠采样数据进行精确参数映射的方法。与固定概率模式相比,该方法具有更好的估计效果,减少了欠采样方案引起的重影效应等伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medical image matching using variable randomized undersampling probability pattern in data acquisition
This paper proposes a randomized variable probability pattern in under-sampling acquisition for medical image matching which is a method that can perform the quantitative analysis of tissue parameters. For high-speed estimation of tissue parameters, random under-sampling with less than the Nyquist rate in k-space is required. This study presents an accurate parameter mapping method for under-sampled data by using various randomized probability pattern. In comparison to the fixed probability pattern, the proposed method shows improved estimation results with reduced artifacts such as ghosting effects due to the undersampling scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection and decoding of photogrammetric coded targets Human movement detection using home network information and events on smartphones Multi-stage FIR filter design for portable digital spectrum analyzers A pose adaptive eye detection method using 3D face information Learning of social skills for Human-Robot Interaction by hierarchical HMM and interaction dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1