减法适应:自动机器人

Q. Davis, Stephanie J. Woodman, Melanie Landesberg, Rebecca Kramer‐Bottiglio, J. Bongard
{"title":"减法适应:自动机器人","authors":"Q. Davis, Stephanie J. Woodman, Melanie Landesberg, Rebecca Kramer‐Bottiglio, J. Bongard","doi":"10.1109/RoboSoft55895.2023.10122102","DOIUrl":null,"url":null,"abstract":"Robot adaptation is typically limited to adaptive control policies or actuated morphology changes (such as shape change). When part of a robot body is removed it is typically viewed as an injury that must be adapted to; the potential for adaptation through subtraction by removal of body components has not yet been considered. Biological systems, on the other hand, provide many examples of subtractive adaptation, including gene or nucleotide deletion at the evolutionary scale, apoptosis at the cellular scale, and autotomy (the deliberate loss of an appendage) at the organismal scale. In this work, we consider the adaptive potential of evolved autotomy in simulated soft robots. To do so we jointly evolved the body plans, control policies, and/or which body parts to remove for soft robots. Our results show that autotomy, rather than policy adaptation, sometimes evolved to change the robot's heading when commanded. In most trials, policy adaptation was favored by the evolutionary algorithm over autotomy for changing heading. But the fact that autotomy appeared as a viable solution in some evolving populations, both when starting body plans were evolved or set manually, suggests that this form of morphological adaptation may be useful for future soft robots.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subtract to Adapt: Autotomic Robots\",\"authors\":\"Q. Davis, Stephanie J. Woodman, Melanie Landesberg, Rebecca Kramer‐Bottiglio, J. Bongard\",\"doi\":\"10.1109/RoboSoft55895.2023.10122102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot adaptation is typically limited to adaptive control policies or actuated morphology changes (such as shape change). When part of a robot body is removed it is typically viewed as an injury that must be adapted to; the potential for adaptation through subtraction by removal of body components has not yet been considered. Biological systems, on the other hand, provide many examples of subtractive adaptation, including gene or nucleotide deletion at the evolutionary scale, apoptosis at the cellular scale, and autotomy (the deliberate loss of an appendage) at the organismal scale. In this work, we consider the adaptive potential of evolved autotomy in simulated soft robots. To do so we jointly evolved the body plans, control policies, and/or which body parts to remove for soft robots. Our results show that autotomy, rather than policy adaptation, sometimes evolved to change the robot's heading when commanded. In most trials, policy adaptation was favored by the evolutionary algorithm over autotomy for changing heading. But the fact that autotomy appeared as a viable solution in some evolving populations, both when starting body plans were evolved or set manually, suggests that this form of morphological adaptation may be useful for future soft robots.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10122102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人自适应通常限于自适应控制策略或驱动的形态变化(如形状变化)。当机器人身体的一部分被移除时,它通常被视为必须适应的伤害;尚未考虑通过去除身体成分的减法来适应的可能性。另一方面,生物系统提供了许多减法适应的例子,包括进化尺度上的基因或核苷酸缺失,细胞尺度上的细胞凋亡,以及有机体尺度上的自切(故意失去附属物)。在这项工作中,我们考虑了进化自切在模拟软体机器人中的适应潜力。为此,我们共同制定了软体机器人的身体计划、控制策略和/或要移除的身体部位。我们的研究结果表明,自动切断,而不是策略适应,有时会进化到在命令时改变机器人的方向。在大多数试验中,进化算法在改变航向时更倾向于策略适应而不是自切。但事实上,在一些进化的种群中,无论是开始的身体计划是进化的还是手动设定的,自切术都是一种可行的解决方案,这表明这种形态适应形式可能对未来的软体机器人有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subtract to Adapt: Autotomic Robots
Robot adaptation is typically limited to adaptive control policies or actuated morphology changes (such as shape change). When part of a robot body is removed it is typically viewed as an injury that must be adapted to; the potential for adaptation through subtraction by removal of body components has not yet been considered. Biological systems, on the other hand, provide many examples of subtractive adaptation, including gene or nucleotide deletion at the evolutionary scale, apoptosis at the cellular scale, and autotomy (the deliberate loss of an appendage) at the organismal scale. In this work, we consider the adaptive potential of evolved autotomy in simulated soft robots. To do so we jointly evolved the body plans, control policies, and/or which body parts to remove for soft robots. Our results show that autotomy, rather than policy adaptation, sometimes evolved to change the robot's heading when commanded. In most trials, policy adaptation was favored by the evolutionary algorithm over autotomy for changing heading. But the fact that autotomy appeared as a viable solution in some evolving populations, both when starting body plans were evolved or set manually, suggests that this form of morphological adaptation may be useful for future soft robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modular Bio-inspired Robotic Hand with High Sensitivity Sensorizing a Compression Sleeve for Continuous Pressure Monitoring and Lymphedema Treatment Using Pneumatic or Resistive Sensors Fabrication and Characterization of a Passive Variable Stiffness Joint based on Shear Thickening Fluids A Soft Wearable Robot to Support Scapular Adduction and Abduction for Respiratory Rehabilitation Design of 3D-Printed Continuum Robots Using Topology Optimized Compliant Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1