基于BP神经网络的泰勒级数展开系数工程解

Zhongzhong Hu, Helei Wu, Shuyun Zhu
{"title":"基于BP神经网络的泰勒级数展开系数工程解","authors":"Zhongzhong Hu, Helei Wu, Shuyun Zhu","doi":"10.1109/ICICIS.2011.128","DOIUrl":null,"url":null,"abstract":"One method of obtaining the Taylor Series Expansion Coefficients, which are suitable for engineering application, are presented: Artificial neural network(ANN) , by virtue of its high nonlinear and learning abilities. The Taylor Series ( TS ) can be represented as a standard 3-layers feed-forward neural network after transforming in which the weights are correspond to the Taylor Coefficients. Therefore, the Taylor Coefficients can be determined by using Back Propagation (BP) algorithm. In the methods, we only need the sample space of the original function. So the method have the value of application in industries.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Engineering Solution to Taylor Series Expansion Coefficients Based on BP Neural Network\",\"authors\":\"Zhongzhong Hu, Helei Wu, Shuyun Zhu\",\"doi\":\"10.1109/ICICIS.2011.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One method of obtaining the Taylor Series Expansion Coefficients, which are suitable for engineering application, are presented: Artificial neural network(ANN) , by virtue of its high nonlinear and learning abilities. The Taylor Series ( TS ) can be represented as a standard 3-layers feed-forward neural network after transforming in which the weights are correspond to the Taylor Coefficients. Therefore, the Taylor Coefficients can be determined by using Back Propagation (BP) algorithm. In the methods, we only need the sample space of the original function. So the method have the value of application in industries.\",\"PeriodicalId\":255291,\"journal\":{\"name\":\"2011 International Conference on Internet Computing and Information Services\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Internet Computing and Information Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS.2011.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种适用于工程应用的求解泰勒级数展开系数的方法:人工神经网络(ANN),它具有高度的非线性和学习能力。变换后的泰勒级数(TS)可以表示为一个标准的三层前馈神经网络,其中权值对应于泰勒系数。因此,可以使用反向传播(BP)算法确定泰勒系数。在这些方法中,我们只需要原始函数的样本空间。因此该方法具有一定的工业应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Engineering Solution to Taylor Series Expansion Coefficients Based on BP Neural Network
One method of obtaining the Taylor Series Expansion Coefficients, which are suitable for engineering application, are presented: Artificial neural network(ANN) , by virtue of its high nonlinear and learning abilities. The Taylor Series ( TS ) can be represented as a standard 3-layers feed-forward neural network after transforming in which the weights are correspond to the Taylor Coefficients. Therefore, the Taylor Coefficients can be determined by using Back Propagation (BP) algorithm. In the methods, we only need the sample space of the original function. So the method have the value of application in industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telephone Clients Management System with Short Messages The Analysis on the Function of Risk Management in Construction Enterprises Development Test Case Prioritization Technique Based on Genetic Algorithm A Model to Create Graeco Latin Square Using Genetic Algorithm Perceptual System of the Dangerous Goods in Transit Escort Based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1