{"title":"偏离平衡","authors":"Karin Krauthausen","doi":"10.1515/9783110758603-005","DOIUrl":null,"url":null,"abstract":"Der Kibble-Zurek-Mechanismus beschreibt für kontinuierliche Phasenübergänge das Auftreten von topologischen Defekten bei endlichen Kühlraten. Er ist auf völlig unterschiedlichen Längenskalen relevant und wurde für die spontane Symmetriebrechung des Higgs-Feldes in kosmologischen Modellen entwickelt. Genauso wichtig ist er aber in kondensierter Materie, z. B. Quantenflüssigkeiten. Mit einem kolloidalen System lässt sich der Kibble-Zurek-Mechanismus auf „atomaren“ Skalen visualisieren und untersuchen.","PeriodicalId":118632,"journal":{"name":"Literatur nach der Digitalisierung","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fern des Gleichgewichts\",\"authors\":\"Karin Krauthausen\",\"doi\":\"10.1515/9783110758603-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Der Kibble-Zurek-Mechanismus beschreibt für kontinuierliche Phasenübergänge das Auftreten von topologischen Defekten bei endlichen Kühlraten. Er ist auf völlig unterschiedlichen Längenskalen relevant und wurde für die spontane Symmetriebrechung des Higgs-Feldes in kosmologischen Modellen entwickelt. Genauso wichtig ist er aber in kondensierter Materie, z. B. Quantenflüssigkeiten. Mit einem kolloidalen System lässt sich der Kibble-Zurek-Mechanismus auf „atomaren“ Skalen visualisieren und untersuchen.\",\"PeriodicalId\":118632,\"journal\":{\"name\":\"Literatur nach der Digitalisierung\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Literatur nach der Digitalisierung\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110758603-005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Literatur nach der Digitalisierung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110758603-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Der Kibble-Zurek-Mechanismus beschreibt für kontinuierliche Phasenübergänge das Auftreten von topologischen Defekten bei endlichen Kühlraten. Er ist auf völlig unterschiedlichen Längenskalen relevant und wurde für die spontane Symmetriebrechung des Higgs-Feldes in kosmologischen Modellen entwickelt. Genauso wichtig ist er aber in kondensierter Materie, z. B. Quantenflüssigkeiten. Mit einem kolloidalen System lässt sich der Kibble-Zurek-Mechanismus auf „atomaren“ Skalen visualisieren und untersuchen.