基于重构的多类SVM分类器功耗感知硬件原型

R. A. Patil, G. Gupta, V. Sahula, A. S. Mandal
{"title":"基于重构的多类SVM分类器功耗感知硬件原型","authors":"R. A. Patil, G. Gupta, V. Sahula, A. S. Mandal","doi":"10.1109/VLSID.2012.47","DOIUrl":null,"url":null,"abstract":"This paper presents power aware hardware implementation of multiclass Support Vector Machine on FPGA using systolic array architecture. It uses Partial reconfiguration schemes of XILINX for power optimal implementation of the design. Systolic array architecture provides efficient memory management, reduced complexity, and efficient data transfer mechanisms. Multiclass support vector machine is used as classifier for facial expression recognition system, which identifies one of six basic facial expressions such as smile, surprise, sad, anger, disgust, and fear. The extracted parameters from training phase of the SVM are used to implement testing phase of the SVM on the hardware. In the architecture, vector multiplication operation and classification of pair wise classifiers is designed. A data set of Cohn Kanade database in six different classes is used for training and testing of proposed SVM. This architecture is then partially reconfigured using difference based approach with the help of XILINX EDA tools. For feature classification power reduction is achieved using reconfiguration.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Power Aware Hardware Prototyping of Multiclass SVM Classifier Through Reconfiguration\",\"authors\":\"R. A. Patil, G. Gupta, V. Sahula, A. S. Mandal\",\"doi\":\"10.1109/VLSID.2012.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents power aware hardware implementation of multiclass Support Vector Machine on FPGA using systolic array architecture. It uses Partial reconfiguration schemes of XILINX for power optimal implementation of the design. Systolic array architecture provides efficient memory management, reduced complexity, and efficient data transfer mechanisms. Multiclass support vector machine is used as classifier for facial expression recognition system, which identifies one of six basic facial expressions such as smile, surprise, sad, anger, disgust, and fear. The extracted parameters from training phase of the SVM are used to implement testing phase of the SVM on the hardware. In the architecture, vector multiplication operation and classification of pair wise classifiers is designed. A data set of Cohn Kanade database in six different classes is used for training and testing of proposed SVM. This architecture is then partially reconfigured using difference based approach with the help of XILINX EDA tools. For feature classification power reduction is achieved using reconfiguration.\",\"PeriodicalId\":405021,\"journal\":{\"name\":\"2012 25th International Conference on VLSI Design\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 25th International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSID.2012.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文采用收缩阵列结构,在FPGA上实现了多类支持向量机的功耗感知硬件实现。采用XILINX的部分重构方案对设计进行功率优化实现。收缩阵列架构提供高效的内存管理、降低复杂性和高效的数据传输机制。将多类支持向量机作为人脸表情识别系统的分类器,对微笑、惊讶、悲伤、愤怒、厌恶、恐惧等六种基本面部表情进行识别。从支持向量机训练阶段提取的参数用于在硬件上实现支持向量机的测试阶段。在该体系结构中,设计了向量乘法运算和对分类器的分类。使用Cohn Kanade数据库的6个不同类别的数据集对所提出的支持向量机进行训练和测试。然后在XILINX EDA工具的帮助下,使用基于差异的方法部分重新配置该体系结构。对于特征分类,使用重构实现了功率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Aware Hardware Prototyping of Multiclass SVM Classifier Through Reconfiguration
This paper presents power aware hardware implementation of multiclass Support Vector Machine on FPGA using systolic array architecture. It uses Partial reconfiguration schemes of XILINX for power optimal implementation of the design. Systolic array architecture provides efficient memory management, reduced complexity, and efficient data transfer mechanisms. Multiclass support vector machine is used as classifier for facial expression recognition system, which identifies one of six basic facial expressions such as smile, surprise, sad, anger, disgust, and fear. The extracted parameters from training phase of the SVM are used to implement testing phase of the SVM on the hardware. In the architecture, vector multiplication operation and classification of pair wise classifiers is designed. A data set of Cohn Kanade database in six different classes is used for training and testing of proposed SVM. This architecture is then partially reconfigured using difference based approach with the help of XILINX EDA tools. For feature classification power reduction is achieved using reconfiguration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Graph Based Circuit Simulator for PDE-Electrical Analogy Tutorial T8A: Designing Silicon-Photonic Communication Networks for Manycore Systems Efficient Online RTL Debugging Methodology for Logic Emulation Systems Low-Overhead Maximum Power Point Tracking for Micro-Scale Solar Energy Harvesting Systems A Framework for TSV Serialization-aware Synthesis of Application Specific 3D Networks-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1