可视化聚类有效性(VCV)显示原型生成器聚类方法

J. Bezdek, R. Hathaway
{"title":"可视化聚类有效性(VCV)显示原型生成器聚类方法","authors":"J. Bezdek, R. Hathaway","doi":"10.1109/FUZZ.2003.1206546","DOIUrl":null,"url":null,"abstract":"Conventional cluster validity techniques usually represent all the validity information available about a particular clustering by a single number. The display method introduced here is an alternative to standard validity functionals. The proposed approach uses intensity images generated from the results of any prototype generator clustering algorithm as a means for cluster validation. Several numerical examples are given to illustrate the method.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Visual cluster validity (VCV) displays for prototype generator clustering methods\",\"authors\":\"J. Bezdek, R. Hathaway\",\"doi\":\"10.1109/FUZZ.2003.1206546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional cluster validity techniques usually represent all the validity information available about a particular clustering by a single number. The display method introduced here is an alternative to standard validity functionals. The proposed approach uses intensity images generated from the results of any prototype generator clustering algorithm as a means for cluster validation. Several numerical examples are given to illustrate the method.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1206546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

传统的聚类效度技术通常用一个数字表示一个特定聚类的所有可用效度信息。这里介绍的显示方法是标准有效性函数的替代方法。该方法使用任何原型生成器聚类算法的结果生成的强度图像作为聚类验证的手段。给出了几个数值算例来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual cluster validity (VCV) displays for prototype generator clustering methods
Conventional cluster validity techniques usually represent all the validity information available about a particular clustering by a single number. The display method introduced here is an alternative to standard validity functionals. The proposed approach uses intensity images generated from the results of any prototype generator clustering algorithm as a means for cluster validation. Several numerical examples are given to illustrate the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy flow-shop scheduling models based on credibility measure Morphological perceptrons with dendritic structure A validation procedure for fuzzy multiattribute decision making Context dependent information aggregation Traffic engineering with MPLS using fuzzy logic for application in IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1