深度神经网络可靠性评估的脆弱性取值范围及影响因素

Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin
{"title":"深度神经网络可靠性评估的脆弱性取值范围及影响因素","authors":"Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin","doi":"10.1109/ETS56758.2023.10174133","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) and their accelerators are being deployed ever more frequently in safety-critical applications leading to increasing reliability concerns. A traditional and accurate method for assessing DNNs’ reliability has been resorting to fault injection, which, however, suffers from prohibitive time complexity. While analytical and hybrid fault injection-/analytical-based methods have been proposed, they are either inaccurate or specific to particular accelerator architectures.In this work, we propose a novel accurate, fine-grain, metric-oriented, and accelerator-agnostic method called DeepVigor that provides vulnerability value ranges for DNN neurons’ outputs. An outcome of DeepVigor is an analytical model representing vulnerable and non-vulnerable ranges for each neuron that can be exploited to develop different techniques for improving DNNs’ reliability. Moreover, DeepVigor provides reliability assessment metrics based on vulnerability factors for bits, neurons, and layers using the vulnerability ranges.The proposed method is not only faster than fault injection but also provides extensive and accurate information about the reliability of DNNs, independent from the accelerator. The experimental evaluations in the paper indicate that the proposed vulnerability ranges are 99.9% to 100% accurate even when evaluated on previously unseen test data. Also, it is shown that the obtained vulnerability factors represent the criticality of bits, neurons, and layers proficiently. DeepVigor is implemented in the PyTorch framework and validated on complex DNN benchmarks.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DeepVigor: VulnerabIlity Value RanGes and FactORs for DNNs’ Reliability Assessment\",\"authors\":\"Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin\",\"doi\":\"10.1109/ETS56758.2023.10174133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) and their accelerators are being deployed ever more frequently in safety-critical applications leading to increasing reliability concerns. A traditional and accurate method for assessing DNNs’ reliability has been resorting to fault injection, which, however, suffers from prohibitive time complexity. While analytical and hybrid fault injection-/analytical-based methods have been proposed, they are either inaccurate or specific to particular accelerator architectures.In this work, we propose a novel accurate, fine-grain, metric-oriented, and accelerator-agnostic method called DeepVigor that provides vulnerability value ranges for DNN neurons’ outputs. An outcome of DeepVigor is an analytical model representing vulnerable and non-vulnerable ranges for each neuron that can be exploited to develop different techniques for improving DNNs’ reliability. Moreover, DeepVigor provides reliability assessment metrics based on vulnerability factors for bits, neurons, and layers using the vulnerability ranges.The proposed method is not only faster than fault injection but also provides extensive and accurate information about the reliability of DNNs, independent from the accelerator. The experimental evaluations in the paper indicate that the proposed vulnerability ranges are 99.9% to 100% accurate even when evaluated on previously unseen test data. Also, it is shown that the obtained vulnerability factors represent the criticality of bits, neurons, and layers proficiently. DeepVigor is implemented in the PyTorch framework and validated on complex DNN benchmarks.\",\"PeriodicalId\":211522,\"journal\":{\"name\":\"2023 IEEE European Test Symposium (ETS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS56758.2023.10174133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度神经网络(dnn)及其加速器正越来越频繁地部署在安全关键应用中,导致人们对其可靠性的担忧日益增加。传统的、准确的深度神经网络可靠性评估方法一直是采用故障注入,然而,这种方法的时间复杂度过高。虽然已经提出了基于分析和混合故障注入/分析的方法,但它们要么不准确,要么只针对特定的加速器架构。在这项工作中,我们提出了一种新颖的精确、细粒度、面向度量和加速器不可知的方法,称为DeepVigor,该方法为DNN神经元的输出提供了漏洞值范围。DeepVigor的一个结果是一个分析模型,代表每个神经元的脆弱和非脆弱范围,可以用来开发不同的技术来提高dnn的可靠性。此外,DeepVigor还根据漏洞范围为比特、神经元和层提供基于漏洞因素的可靠性评估指标。该方法不仅比故障注入更快,而且能够独立于加速器提供关于深度神经网络可靠性的广泛而准确的信息。本文的实验评估表明,即使在以前未见过的测试数据上进行评估,所提出的漏洞范围也具有99.9%到100%的准确性。结果表明,所得到的漏洞因子能较好地表征比特、神经元和层的临界性。DeepVigor在PyTorch框架中实现,并在复杂的DNN基准测试中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepVigor: VulnerabIlity Value RanGes and FactORs for DNNs’ Reliability Assessment
Deep Neural Networks (DNNs) and their accelerators are being deployed ever more frequently in safety-critical applications leading to increasing reliability concerns. A traditional and accurate method for assessing DNNs’ reliability has been resorting to fault injection, which, however, suffers from prohibitive time complexity. While analytical and hybrid fault injection-/analytical-based methods have been proposed, they are either inaccurate or specific to particular accelerator architectures.In this work, we propose a novel accurate, fine-grain, metric-oriented, and accelerator-agnostic method called DeepVigor that provides vulnerability value ranges for DNN neurons’ outputs. An outcome of DeepVigor is an analytical model representing vulnerable and non-vulnerable ranges for each neuron that can be exploited to develop different techniques for improving DNNs’ reliability. Moreover, DeepVigor provides reliability assessment metrics based on vulnerability factors for bits, neurons, and layers using the vulnerability ranges.The proposed method is not only faster than fault injection but also provides extensive and accurate information about the reliability of DNNs, independent from the accelerator. The experimental evaluations in the paper indicate that the proposed vulnerability ranges are 99.9% to 100% accurate even when evaluated on previously unseen test data. Also, it is shown that the obtained vulnerability factors represent the criticality of bits, neurons, and layers proficiently. DeepVigor is implemented in the PyTorch framework and validated on complex DNN benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1