基于神经网络建模的开放式学习系统脑功能适应性评估(认知风格方法)

H. Mustafa, S. Badran
{"title":"基于神经网络建模的开放式学习系统脑功能适应性评估(认知风格方法)","authors":"H. Mustafa, S. Badran","doi":"10.1109/ICCITECHNOL.2011.5762686","DOIUrl":null,"url":null,"abstract":"The piece of research presents a conceptual overview on diverse cognitive styles reflections in adaptable Open Learning systems. The main goal of this approach is quantitative forecasting the performance of adaptable Open Learning (equivalently e-learning) Systems using cognitive Neural Network modelling. Furthermore, analysis of interactive two diverse learners' cognitive styles with a friendly adaptable teaching environment(e-courses material). Consequently, presented paper provides e-learning systems' designers with relevant guide for learning performance enhancement. Additionally, it supports e-learners in fulfilment of better learning achievements during face to face tutoring. Accordingly, quantitative analysis of e-learning adaptability performed herein, via assessment of matching between learning style preferences and the instructor's teaching style and/or e-courses material. Interestingly, application of two realistic cognitive models using Artificial Neural Network gives an opportunity to experience well assessment of adaptable e-learning features. Such as adaptability mismatching, adaptation time convergence, and individual differences of e-learners' adaptability.","PeriodicalId":211631,"journal":{"name":"2011 International Conference on Communications and Information Technology (ICCIT)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On assessment of brain function adaptability in Open Learning systems using Neural Networks modeling (cognitive styles approach)\",\"authors\":\"H. Mustafa, S. Badran\",\"doi\":\"10.1109/ICCITECHNOL.2011.5762686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The piece of research presents a conceptual overview on diverse cognitive styles reflections in adaptable Open Learning systems. The main goal of this approach is quantitative forecasting the performance of adaptable Open Learning (equivalently e-learning) Systems using cognitive Neural Network modelling. Furthermore, analysis of interactive two diverse learners' cognitive styles with a friendly adaptable teaching environment(e-courses material). Consequently, presented paper provides e-learning systems' designers with relevant guide for learning performance enhancement. Additionally, it supports e-learners in fulfilment of better learning achievements during face to face tutoring. Accordingly, quantitative analysis of e-learning adaptability performed herein, via assessment of matching between learning style preferences and the instructor's teaching style and/or e-courses material. Interestingly, application of two realistic cognitive models using Artificial Neural Network gives an opportunity to experience well assessment of adaptable e-learning features. Such as adaptability mismatching, adaptation time convergence, and individual differences of e-learners' adaptability.\",\"PeriodicalId\":211631,\"journal\":{\"name\":\"2011 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2011.5762686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2011.5762686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

这篇研究对适应性开放学习系统中不同认知风格的反映进行了概念性概述。该方法的主要目标是使用认知神经网络建模定量预测适应性开放学习(相当于电子学习)系统的性能。进一步分析了两种不同学习者的认知风格与友好的适应性教学环境(电子课程材料)的互动。因此,本文为电子学习系统的设计者提供了提高学习绩效的相关指导。此外,它支持在线学习者在面对面辅导中实现更好的学习成果。因此,通过评估学习风格偏好与教师的教学风格和/或电子课程材料之间的匹配,本文对电子学习适应性进行了定量分析。有趣的是,使用人工神经网络的两种现实认知模型的应用为适应性电子学习特征的良好评估提供了机会。网络学习者的适应性存在适应性不匹配、适应时间收敛、个体差异等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On assessment of brain function adaptability in Open Learning systems using Neural Networks modeling (cognitive styles approach)
The piece of research presents a conceptual overview on diverse cognitive styles reflections in adaptable Open Learning systems. The main goal of this approach is quantitative forecasting the performance of adaptable Open Learning (equivalently e-learning) Systems using cognitive Neural Network modelling. Furthermore, analysis of interactive two diverse learners' cognitive styles with a friendly adaptable teaching environment(e-courses material). Consequently, presented paper provides e-learning systems' designers with relevant guide for learning performance enhancement. Additionally, it supports e-learners in fulfilment of better learning achievements during face to face tutoring. Accordingly, quantitative analysis of e-learning adaptability performed herein, via assessment of matching between learning style preferences and the instructor's teaching style and/or e-courses material. Interestingly, application of two realistic cognitive models using Artificial Neural Network gives an opportunity to experience well assessment of adaptable e-learning features. Such as adaptability mismatching, adaptation time convergence, and individual differences of e-learners' adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable multi-wavelength SOA based linear cavity fiber laser source for optical communications applications A low complexity fine timing offset and channel estimation algorithm for cooperative diversity OFDM system On the detection and estimation of correlated signal using circular antenna arrays Critical infrastructure protection: A 21st century challenge Sharpening the limits of the zeros of Daubechies wavelets related polynomials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1