一种新的基于磁共振成像的图像分割算法

Yimin Hou, Lei Guo, Xiangmin Lun
{"title":"一种新的基于磁共振成像的图像分割算法","authors":"Yimin Hou, Lei Guo, Xiangmin Lun","doi":"10.1109/ICARCV.2006.345105","DOIUrl":null,"url":null,"abstract":"Proposed a novel image segmentation method based on Markov random field (MRF) and context information. The method introduces the relationships of observed image intensities and distance between pixels to the traditional neighborhood potential function, so that to describe the probability of pixels being classified into one class. We transform the segmentation process to maximum a posteriori (MAP) by Bayes theorem. Finally, the iterative conditional model (ICM) is used to solve the MAP problem. In the experiments, this method is compared with traditional expectation-maximization (EM) and MRF image segmentation techniques using synthetic and real images. The experiment results and SNR-CCR histogram show that the algorithm proposed is more effective for noisy image segmentation.","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel MRF-Based Image Segmentation Algorithm\",\"authors\":\"Yimin Hou, Lei Guo, Xiangmin Lun\",\"doi\":\"10.1109/ICARCV.2006.345105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposed a novel image segmentation method based on Markov random field (MRF) and context information. The method introduces the relationships of observed image intensities and distance between pixels to the traditional neighborhood potential function, so that to describe the probability of pixels being classified into one class. We transform the segmentation process to maximum a posteriori (MAP) by Bayes theorem. Finally, the iterative conditional model (ICM) is used to solve the MAP problem. In the experiments, this method is compared with traditional expectation-maximization (EM) and MRF image segmentation techniques using synthetic and real images. The experiment results and SNR-CCR histogram show that the algorithm proposed is more effective for noisy image segmentation.\",\"PeriodicalId\":415827,\"journal\":{\"name\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2006.345105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于马尔可夫随机场和上下文信息的图像分割方法。该方法将观测图像强度与像素间距离的关系引入到传统的邻域势函数中,从而描述像素被归为一类的概率。我们利用贝叶斯定理将分割过程转化为极大后验(MAP)。最后,采用迭代条件模型(ICM)求解MAP问题。在实验中,将该方法与传统的基于合成图像和真实图像的期望最大化(EM)和磁共振成像(MRF)图像分割技术进行了比较。实验结果和信噪比- ccr直方图表明,该算法对噪声图像分割更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel MRF-Based Image Segmentation Algorithm
Proposed a novel image segmentation method based on Markov random field (MRF) and context information. The method introduces the relationships of observed image intensities and distance between pixels to the traditional neighborhood potential function, so that to describe the probability of pixels being classified into one class. We transform the segmentation process to maximum a posteriori (MAP) by Bayes theorem. Finally, the iterative conditional model (ICM) is used to solve the MAP problem. In the experiments, this method is compared with traditional expectation-maximization (EM) and MRF image segmentation techniques using synthetic and real images. The experiment results and SNR-CCR histogram show that the algorithm proposed is more effective for noisy image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1