{"title":"面向运动轨迹的六自由度惯性跟踪应用于商用智能手机","authors":"Peize Li, Chris Xiaoxuan Lu","doi":"10.1145/3485730.3494116","DOIUrl":null,"url":null,"abstract":"Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion track-lets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Tracklet Oriented 6-DoF Inertial Tracking Using Commodity Smartphones\",\"authors\":\"Peize Li, Chris Xiaoxuan Lu\",\"doi\":\"10.1145/3485730.3494116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion track-lets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3494116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3494116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion Tracklet Oriented 6-DoF Inertial Tracking Using Commodity Smartphones
Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion track-lets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.