尼日尔三角洲西北部Ewan和Oloye油田(中中新世)地震与层序地层分析:对三角洲沉积层序的启示

Durogbitan A Abimbola
{"title":"尼日尔三角洲西北部Ewan和Oloye油田(中中新世)地震与层序地层分析:对三角洲沉积层序的启示","authors":"Durogbitan A Abimbola","doi":"10.4172/2155-9910.1000197","DOIUrl":null,"url":null,"abstract":"The main aim of this works is to define local sequence variability and its implications for deltaic depositional sequences within the studied area. This research work makes use of depth converted three dimensional seismic cube, well logs, core photography descriptions and biostratigraphic reports. Recognition and interpretation of stratal surfaces were based on facies shifts and stacking patterns and reflection terminations derived from the interpretation of seismic data and wireline logs integrated with core photography and biostratigraphic reports. Seismic stratigraphic analysis of well and seismic data suggests that middle Miocene- early Pliocene strata within the studied area were made of six depositional sequences. Sequences are made up aggradational to progradational HST that makes up about 50% of a sequence. TST are thin and widespread while LST are restricted to within WNWESE trending valley fills typically 4 km wide and an average 120 m deep. Outside the LST valleys, transgressive surfaces, maximum flooding surfaces and sequence boundaries are coincident on interfluves. This suggests that during LST times most of the area was periodically subaerially exposed and several incised valleys/canyons were developed. These incisions/canyons acted as a sand feeder that led to the deposition of high amplitude deposits (sandstones) on the slope and within the basin floor setting. Sequences mapped over the study area show local variation associated with growth faults. There is a strong local growth fault control on sequence variability. Further local controls on sequence geometry are shelf instability and slope scars which have a strong geomorphological impact on the area. The depth of incised valleys within the uppermost HST (up to 350 m) is difficult to explain in terms of sea level fall alone because eustatically-driven sea level variations during the Miocene are generally reported to be less than 100 m (330 ft). This suggests that the character of sequence development and depositional facies preserved within the study area depends on relative sea level changes, relative rates of regional structural collapse and sedimentation rate. The occurrence of several incisions in the middle Miocene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may be the stratigraphic signature of major drops in relative sea level during Miocene and Pliocene. Variability within the depositional sequences is said to be largely controlled by local growth faults, rapid relative sea level changes, basin physiography (shelf edge) and high rate of sediment influx.","PeriodicalId":331621,"journal":{"name":"Journal of Marine Science: Research & Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seismic and Sequence Stratigraphic Analysis of Ewan and Oloye Fields(Middle Miocene), Northwestern Niger Delta: Implications for DeltaicDepositional Sequences\",\"authors\":\"Durogbitan A Abimbola\",\"doi\":\"10.4172/2155-9910.1000197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this works is to define local sequence variability and its implications for deltaic depositional sequences within the studied area. This research work makes use of depth converted three dimensional seismic cube, well logs, core photography descriptions and biostratigraphic reports. Recognition and interpretation of stratal surfaces were based on facies shifts and stacking patterns and reflection terminations derived from the interpretation of seismic data and wireline logs integrated with core photography and biostratigraphic reports. Seismic stratigraphic analysis of well and seismic data suggests that middle Miocene- early Pliocene strata within the studied area were made of six depositional sequences. Sequences are made up aggradational to progradational HST that makes up about 50% of a sequence. TST are thin and widespread while LST are restricted to within WNWESE trending valley fills typically 4 km wide and an average 120 m deep. Outside the LST valleys, transgressive surfaces, maximum flooding surfaces and sequence boundaries are coincident on interfluves. This suggests that during LST times most of the area was periodically subaerially exposed and several incised valleys/canyons were developed. These incisions/canyons acted as a sand feeder that led to the deposition of high amplitude deposits (sandstones) on the slope and within the basin floor setting. Sequences mapped over the study area show local variation associated with growth faults. There is a strong local growth fault control on sequence variability. Further local controls on sequence geometry are shelf instability and slope scars which have a strong geomorphological impact on the area. The depth of incised valleys within the uppermost HST (up to 350 m) is difficult to explain in terms of sea level fall alone because eustatically-driven sea level variations during the Miocene are generally reported to be less than 100 m (330 ft). This suggests that the character of sequence development and depositional facies preserved within the study area depends on relative sea level changes, relative rates of regional structural collapse and sedimentation rate. The occurrence of several incisions in the middle Miocene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may be the stratigraphic signature of major drops in relative sea level during Miocene and Pliocene. Variability within the depositional sequences is said to be largely controlled by local growth faults, rapid relative sea level changes, basin physiography (shelf edge) and high rate of sediment influx.\",\"PeriodicalId\":331621,\"journal\":{\"name\":\"Journal of Marine Science: Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science: Research & Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9910.1000197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science: Research & Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9910.1000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作的主要目的是确定局部层序变异及其对研究区内三角洲沉积层序的影响。本研究利用了深度转换三维地震立方体、测井资料、岩心摄影描述和生物地层报告。地层表面的识别和解释是基于相移和叠加模式,以及根据地震数据和电缆测井资料的解释、岩心摄影和生物地层报告得出的反射终止。井震地层分析和地震资料表明,研究区内中中新世—上新世早期地层由6个沉积层序组成。序列由累加到累进的HST组成,累进HST约占序列的50%。TST薄而广泛,而LST仅限于WNWESE趋势内的山谷填充物,通常宽4公里,平均深120米。在地表温度谷外,海侵面、最大泛水面和层序边界在断层间重合。这表明在LST时期,大部分地区周期性地表暴露,并发育了一些切割的山谷/峡谷。这些切口/峡谷起到了给砂器的作用,导致了斜坡上和盆地底环境中高振幅沉积物(砂岩)的沉积。在研究区内绘制的序列显示出与生长断层相关的局部差异。序列变异性存在较强的局部生长断层控制。对层序几何的进一步局部控制是陆架不稳定性和坡痕,它们对该地区有强烈的地貌影响。在最上层的HST内的切割山谷的深度(高达350米)很难单独用海平面下降来解释,因为中新世期间由静止运动驱动的海平面变化通常被报道为小于100米(330英尺)。这表明研究区内层序发育特征和沉积相的保存取决于相对海平面变化、相对区域构造崩塌速率和沉积速率。中新世中期序列中若干切口的出现可解释为相对海平面显著波动的证据,1型层序边界的存在可能是中新世-上新世相对海平面大幅下降的地层标志。沉积层序内的变异性据说主要受局部生长断层、快速的相对海平面变化、盆地地貌(陆架边缘)和沉积物高流入率控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic and Sequence Stratigraphic Analysis of Ewan and Oloye Fields(Middle Miocene), Northwestern Niger Delta: Implications for DeltaicDepositional Sequences
The main aim of this works is to define local sequence variability and its implications for deltaic depositional sequences within the studied area. This research work makes use of depth converted three dimensional seismic cube, well logs, core photography descriptions and biostratigraphic reports. Recognition and interpretation of stratal surfaces were based on facies shifts and stacking patterns and reflection terminations derived from the interpretation of seismic data and wireline logs integrated with core photography and biostratigraphic reports. Seismic stratigraphic analysis of well and seismic data suggests that middle Miocene- early Pliocene strata within the studied area were made of six depositional sequences. Sequences are made up aggradational to progradational HST that makes up about 50% of a sequence. TST are thin and widespread while LST are restricted to within WNWESE trending valley fills typically 4 km wide and an average 120 m deep. Outside the LST valleys, transgressive surfaces, maximum flooding surfaces and sequence boundaries are coincident on interfluves. This suggests that during LST times most of the area was periodically subaerially exposed and several incised valleys/canyons were developed. These incisions/canyons acted as a sand feeder that led to the deposition of high amplitude deposits (sandstones) on the slope and within the basin floor setting. Sequences mapped over the study area show local variation associated with growth faults. There is a strong local growth fault control on sequence variability. Further local controls on sequence geometry are shelf instability and slope scars which have a strong geomorphological impact on the area. The depth of incised valleys within the uppermost HST (up to 350 m) is difficult to explain in terms of sea level fall alone because eustatically-driven sea level variations during the Miocene are generally reported to be less than 100 m (330 ft). This suggests that the character of sequence development and depositional facies preserved within the study area depends on relative sea level changes, relative rates of regional structural collapse and sedimentation rate. The occurrence of several incisions in the middle Miocene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may be the stratigraphic signature of major drops in relative sea level during Miocene and Pliocene. Variability within the depositional sequences is said to be largely controlled by local growth faults, rapid relative sea level changes, basin physiography (shelf edge) and high rate of sediment influx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Pathogenic Diseases on Corals Associated Risk Factors and Possible Devastation in Future in the Globe Efficiency Analysis with Different Models: The Case of Container Ports Climate: Water Security and Climate Change Design and Control of a Self-Balancing Autonomous Underwater Vehicle with Vision and Detection Capabilities Vitellogenin Level in the Plasma of Russian Sturgeon ( Acipenser gueldenstaedtii ) Northern Israel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1