Fisher判别分析的非稀疏多核学习

F. Yan, J. Kittler, K. Mikolajczyk, M. Tahir
{"title":"Fisher判别分析的非稀疏多核学习","authors":"F. Yan, J. Kittler, K. Mikolajczyk, M. Tahir","doi":"10.1109/ICDM.2009.84","DOIUrl":null,"url":null,"abstract":"We consider the problem of learning a linear combination of pre-specified kernel matrices in the Fisher discriminant analysis setting. Existing methods for such a task impose an $\\ell_1$ norm regularisation on the kernel weights, which produces sparse solution but may lead to loss of information. In this paper, we propose to use $\\ell_2$ norm regularisation instead. The resulting learning problem is formulated as a semi-infinite program and can be solved efficiently. Through experiments on both synthetic data and a very challenging object recognition benchmark, the relative advantages of the proposed method and its $\\ell_1$ counterpart are demonstrated, and insights are gained as to how the choice of regularisation norm should be made.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Non-sparse Multiple Kernel Learning for Fisher Discriminant Analysis\",\"authors\":\"F. Yan, J. Kittler, K. Mikolajczyk, M. Tahir\",\"doi\":\"10.1109/ICDM.2009.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of learning a linear combination of pre-specified kernel matrices in the Fisher discriminant analysis setting. Existing methods for such a task impose an $\\\\ell_1$ norm regularisation on the kernel weights, which produces sparse solution but may lead to loss of information. In this paper, we propose to use $\\\\ell_2$ norm regularisation instead. The resulting learning problem is formulated as a semi-infinite program and can be solved efficiently. Through experiments on both synthetic data and a very challenging object recognition benchmark, the relative advantages of the proposed method and its $\\\\ell_1$ counterpart are demonstrated, and insights are gained as to how the choice of regularisation norm should be made.\",\"PeriodicalId\":247645,\"journal\":{\"name\":\"2009 Ninth IEEE International Conference on Data Mining\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们考虑在Fisher判别分析设置中学习预先指定的核矩阵的线性组合的问题。这种任务的现有方法对核权值施加$\ell_1$范数正则化,产生稀疏解,但可能导致信息丢失。在本文中,我们建议使用$\ell_2$范数正则化来代替。由此产生的学习问题被表述为半无限规划,可以有效地求解。通过在合成数据和极具挑战性的目标识别基准上的实验,证明了该方法与同类方法的相对优势,并对如何选择正则化范数有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-sparse Multiple Kernel Learning for Fisher Discriminant Analysis
We consider the problem of learning a linear combination of pre-specified kernel matrices in the Fisher discriminant analysis setting. Existing methods for such a task impose an $\ell_1$ norm regularisation on the kernel weights, which produces sparse solution but may lead to loss of information. In this paper, we propose to use $\ell_2$ norm regularisation instead. The resulting learning problem is formulated as a semi-infinite program and can be solved efficiently. Through experiments on both synthetic data and a very challenging object recognition benchmark, the relative advantages of the proposed method and its $\ell_1$ counterpart are demonstrated, and insights are gained as to how the choice of regularisation norm should be made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1