基于聚类的自适应正则化技术恢复太阳射电图像

Will Machado, N. Mascarenhas, J. Costa
{"title":"基于聚类的自适应正则化技术恢复太阳射电图像","authors":"Will Machado, N. Mascarenhas, J. Costa","doi":"10.1109/ICPR.2004.907","DOIUrl":null,"url":null,"abstract":"The article describes a new algorithm for the restoration of solar radio images. The technique is based on the use of adaptive regularization procedures that incorporate the k-means clustering algorithm over local roughness measures. Experimental results involving simulated and real images are described. The results demonstrate the superiority of the adaptive procedure compared to conventional regularization, both from the visual and numerical points of view.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restoration of solar radio images using adaptive regularization techniques based on clustering\",\"authors\":\"Will Machado, N. Mascarenhas, J. Costa\",\"doi\":\"10.1109/ICPR.2004.907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes a new algorithm for the restoration of solar radio images. The technique is based on the use of adaptive regularization procedures that incorporate the k-means clustering algorithm over local roughness measures. Experimental results involving simulated and real images are described. The results demonstrate the superiority of the adaptive procedure compared to conventional regularization, both from the visual and numerical points of view.\",\"PeriodicalId\":326040,\"journal\":{\"name\":\"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新的太阳射电图像恢复算法。该技术基于自适应正则化过程的使用,该过程结合了局部粗糙度测量的k-means聚类算法。描述了模拟图像和真实图像的实验结果。结果表明,与传统正则化相比,自适应过程具有视觉和数值上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoration of solar radio images using adaptive regularization techniques based on clustering
The article describes a new algorithm for the restoration of solar radio images. The technique is based on the use of adaptive regularization procedures that incorporate the k-means clustering algorithm over local roughness measures. Experimental results involving simulated and real images are described. The results demonstrate the superiority of the adaptive procedure compared to conventional regularization, both from the visual and numerical points of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color interpolation for single CCD color camera A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error Partially observed objects localization with PCA and KPCA models Multi-resolution volumetric reconstruction using labeled regions Frequency implementation of discrete wavelet transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1