边缘设备上游戏个性化的强化学习

Anand Bodas, Bhargav Upadhyay, Chetan H. Nadiger, Sherine Abdelhak
{"title":"边缘设备上游戏个性化的强化学习","authors":"Anand Bodas, Bhargav Upadhyay, Chetan H. Nadiger, Sherine Abdelhak","doi":"10.1109/INFOCT.2018.8356853","DOIUrl":null,"url":null,"abstract":"Good progress has been shown recently in the area of active learning, specifically, Reinforcement learning (RL). In this paper, the authors show how RL can be used to personalize games based on user-interaction with the game. The work uses Deep Q network models (DQN) and the open source framework OpenAI to build an RL model that is able to optimize the gamer's engagement level in a game. The authors define an example quantitative measure of gamer engagement and incorporate that into the DQN learning reward function. The gamer experience optimization is empirically demonstrated using a game of Pong. Simulation testing and analysis of results indicate adapted RL models increase engagement reward values, thus enhancing gamer experience. The contribution of this paper is twofold: (1) using RL, it paves the path for wider adaptation to user-behavior, starting with gaming, and (2) it shows analysis and feasibility of an RL algorithm on an edge device (Personal Computer) in real-time.","PeriodicalId":376443,"journal":{"name":"2018 International Conference on Information and Computer Technologies (ICICT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reinforcement learning for game personalization on edge devices\",\"authors\":\"Anand Bodas, Bhargav Upadhyay, Chetan H. Nadiger, Sherine Abdelhak\",\"doi\":\"10.1109/INFOCT.2018.8356853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Good progress has been shown recently in the area of active learning, specifically, Reinforcement learning (RL). In this paper, the authors show how RL can be used to personalize games based on user-interaction with the game. The work uses Deep Q network models (DQN) and the open source framework OpenAI to build an RL model that is able to optimize the gamer's engagement level in a game. The authors define an example quantitative measure of gamer engagement and incorporate that into the DQN learning reward function. The gamer experience optimization is empirically demonstrated using a game of Pong. Simulation testing and analysis of results indicate adapted RL models increase engagement reward values, thus enhancing gamer experience. The contribution of this paper is twofold: (1) using RL, it paves the path for wider adaptation to user-behavior, starting with gaming, and (2) it shows analysis and feasibility of an RL algorithm on an edge device (Personal Computer) in real-time.\",\"PeriodicalId\":376443,\"journal\":{\"name\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCT.2018.8356853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2018.8356853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最近在主动学习领域,特别是强化学习(RL)方面取得了良好的进展。在本文中,作者展示了如何使用强化学习来基于用户与游戏的交互来个性化游戏。这项工作使用深度Q网络模型(DQN)和开源框架OpenAI来构建一个能够优化玩家在游戏中的参与度的强化学习模型。作者定义了一个量化衡量玩家粘性的例子,并将其融入DQN学习奖励功能中。玩家体验优化是通过《Pong》游戏进行实证验证的。模拟测试和分析结果表明,适应性强化学习模型提高了玩家粘性奖励值,从而提升了玩家体验。本文的贡献是双重的:(1)使用强化学习,它为更广泛地适应用户行为铺平了道路,从游戏开始;(2)它展示了在边缘设备(个人计算机)上实时分析和可行性强化学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning for game personalization on edge devices
Good progress has been shown recently in the area of active learning, specifically, Reinforcement learning (RL). In this paper, the authors show how RL can be used to personalize games based on user-interaction with the game. The work uses Deep Q network models (DQN) and the open source framework OpenAI to build an RL model that is able to optimize the gamer's engagement level in a game. The authors define an example quantitative measure of gamer engagement and incorporate that into the DQN learning reward function. The gamer experience optimization is empirically demonstrated using a game of Pong. Simulation testing and analysis of results indicate adapted RL models increase engagement reward values, thus enhancing gamer experience. The contribution of this paper is twofold: (1) using RL, it paves the path for wider adaptation to user-behavior, starting with gaming, and (2) it shows analysis and feasibility of an RL algorithm on an edge device (Personal Computer) in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling banking processes A taxonomy of IoT: Security and privacy threats DDoS attack detection mechanism in the application layer using user features Reinforcement learning for game personalization on edge devices Stylized line rendering for three-dimensional models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1