支持向量机在不平衡数据上的单核苷酸多态性识别

L. S. Hasibuan, W. Kusuma, Willy Bayuardi Suwamo
{"title":"支持向量机在不平衡数据上的单核苷酸多态性识别","authors":"L. S. Hasibuan, W. Kusuma, Willy Bayuardi Suwamo","doi":"10.1109/ICACSIS.2014.7065854","DOIUrl":null,"url":null,"abstract":"The advance of DNA sequencing technology presents a significant bioinformatic challenges in a downstream analysis such as identification of single nucleotide polymorphism (SNP). SNP is the most abundant form of genetic marker and have been one of the most crucial researches in bioinformatics. SNP has been applied in wide area, but analysis of SNP in plants is very limited, as in cultivated soybean (Glycine max L.). This paper discusses the identification of SNP in cultivated soybean using Support Vector Machine (SVM). SVM is trained using positive and negative SNP. Previously, we performed a balancing positive and negative SNP with undersampling and oversampling to obtain training data. As a result, the model which is trained with balanced data has better performance than that with imbalanced data.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of single nucleotide polymorphism using support vector machine on imbalanced data\",\"authors\":\"L. S. Hasibuan, W. Kusuma, Willy Bayuardi Suwamo\",\"doi\":\"10.1109/ICACSIS.2014.7065854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advance of DNA sequencing technology presents a significant bioinformatic challenges in a downstream analysis such as identification of single nucleotide polymorphism (SNP). SNP is the most abundant form of genetic marker and have been one of the most crucial researches in bioinformatics. SNP has been applied in wide area, but analysis of SNP in plants is very limited, as in cultivated soybean (Glycine max L.). This paper discusses the identification of SNP in cultivated soybean using Support Vector Machine (SVM). SVM is trained using positive and negative SNP. Previously, we performed a balancing positive and negative SNP with undersampling and oversampling to obtain training data. As a result, the model which is trained with balanced data has better performance than that with imbalanced data.\",\"PeriodicalId\":443250,\"journal\":{\"name\":\"2014 International Conference on Advanced Computer Science and Information System\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Computer Science and Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2014.7065854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

DNA测序技术的进步给下游分析带来了重大的生物信息学挑战,如单核苷酸多态性(SNP)的鉴定。SNP是最丰富的遗传标记形式,已成为生物信息学研究的重要内容之一。SNP已被广泛应用,但对植物SNP的分析非常有限,如对栽培大豆(Glycine max L.)的分析。本文讨论了利用支持向量机(SVM)识别栽培大豆SNP的方法。支持向量机使用正、负SNP进行训练。之前,我们通过欠采样和过采样来平衡正、负SNP以获得训练数据。结果表明,使用平衡数据训练的模型比使用不平衡数据训练的模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of single nucleotide polymorphism using support vector machine on imbalanced data
The advance of DNA sequencing technology presents a significant bioinformatic challenges in a downstream analysis such as identification of single nucleotide polymorphism (SNP). SNP is the most abundant form of genetic marker and have been one of the most crucial researches in bioinformatics. SNP has been applied in wide area, but analysis of SNP in plants is very limited, as in cultivated soybean (Glycine max L.). This paper discusses the identification of SNP in cultivated soybean using Support Vector Machine (SVM). SVM is trained using positive and negative SNP. Previously, we performed a balancing positive and negative SNP with undersampling and oversampling to obtain training data. As a result, the model which is trained with balanced data has better performance than that with imbalanced data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model prediction for accreditation of public junior high school in Bogor using spatial decision tree Campaign 2.0: Analysis of social media utilization in 2014 Jakarta legislative election Performance of robust two-dimensional principal component for classification Extending V-model practices to support SRE to build secure web application A comparison of backpropagation and LVQ: A case study of lung sound recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1