Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos
{"title":"在C/ c++二进制文件中识别动态数据结构","authors":"Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos","doi":"10.1109/ASE.2017.8115646","DOIUrl":null,"url":null,"abstract":"Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DSIbin: Identifying dynamic data structures in C/C++ binaries\",\"authors\":\"Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos\",\"doi\":\"10.1109/ASE.2017.8115646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DSIbin: Identifying dynamic data structures in C/C++ binaries
Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.