在C/ c++二进制文件中识别动态数据结构

Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos
{"title":"在C/ c++二进制文件中识别动态数据结构","authors":"Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos","doi":"10.1109/ASE.2017.8115646","DOIUrl":null,"url":null,"abstract":"Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DSIbin: Identifying dynamic data structures in C/C++ binaries\",\"authors\":\"Thomas Rupprecht, Xi Chen, D. H. White, Jan H. Boockmann, Gerald Lüttgen, H. Bos\",\"doi\":\"10.1109/ASE.2017.8115646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

逆向工程二进制代码是出了名的困难,尤其是理解二进制的动态数据结构。现有的数据结构分析器是有限的。程序理解:它们不检测复杂的结构,如跳跃表,或通过不同类型的节点运行的列表,如Linux内核的循环双链表。它们也没有揭示结构之间复杂的亲子关系。DSI工具弥补了这些缺点,但需要源代码,其中可以获得堆节点的类型信息。我们提出了DSIbin,它是DSI和类型挖掘机Howard的结合,用于检查C/ c++二进制文件。虽然朴素组合已经改进了相关工作,但由于Howard的推断类型通常过于粗糙,因此其精度受到限制。为了解决这个问题,我们基于推测嵌套结构检测和类型合并自动生成精炼类型的候选对象;这些假设的合理性然后由DSI验证。我们通过基准测试证明,DSIbin以高精度检测数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSIbin: Identifying dynamic data structures in C/C++ binaries
Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different types such as in the Linux kernel's cyclic doubly-linked list. They also do not reveal complex parent-child relationships between structures. The tool DSI remedies these shortcomings but requires source code, where type information on heap nodes is available. We present DSIbin, a combination of DSI and the type excavator Howard for the inspection of C/C++ binaries. While a naive combination already improves upon related work, its precision is limited because Howard's inferred types are often too coarse. To address this we auto-generate candidates of refined types based on speculative nested-struct detection and type merging; the plausibility of these hypotheses is then validated by DSI. We demonstrate via benchmarking that DSIbin detects data structures with high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1