基于动态变异遗传算法的问题聚类优化

Nur Suhailayani Suhaimi, Siti Nur Kamaliah, N. Arbin, Z. Othman
{"title":"基于动态变异遗传算法的问题聚类优化","authors":"Nur Suhailayani Suhaimi, Siti Nur Kamaliah, N. Arbin, Z. Othman","doi":"10.1109/AIMS.2015.81","DOIUrl":null,"url":null,"abstract":"Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to indirect knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures.Optimizing the clustered data with certain fixed values could be an issue. Depending on the parameters and attributes of the data, the results yielded probably either stuck in local optima or bias by attributes pattern. Performing Genetic Algorithm in the data cluster may increase the probability of the questions being clustered in the optimal group cluster. Dynamic Mutation in Genetic Algorithm used as repair mechanism to ensure the cluster is optimized enough and produce optimum indexed questions set.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Cluster of Questions by Using Dynamic Mutation in Genetic Algorithm\",\"authors\":\"Nur Suhailayani Suhaimi, Siti Nur Kamaliah, N. Arbin, Z. Othman\",\"doi\":\"10.1109/AIMS.2015.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to indirect knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures.Optimizing the clustered data with certain fixed values could be an issue. Depending on the parameters and attributes of the data, the results yielded probably either stuck in local optima or bias by attributes pattern. Performing Genetic Algorithm in the data cluster may increase the probability of the questions being clustered in the optimal group cluster. Dynamic Mutation in Genetic Algorithm used as repair mechanism to ensure the cluster is optimized enough and produce optimum indexed questions set.\",\"PeriodicalId\":121874,\"journal\":{\"name\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS.2015.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类动态数据是识别和形成组的一个挑战。这种无监督学习通常会导致间接的知识发现。聚类检测算法通过相似性度量来搜索彼此相似的数据聚类。使用某些固定值优化群集数据可能是一个问题。根据数据的参数和属性,产生的结果可能陷入局部最优或属性模式偏差。在数据聚类中执行遗传算法可以提高问题聚在最优组聚类中的概率。利用遗传算法中的动态突变作为修复机制,保证聚类得到充分优化,生成最优索引题集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Cluster of Questions by Using Dynamic Mutation in Genetic Algorithm
Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to indirect knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures.Optimizing the clustered data with certain fixed values could be an issue. Depending on the parameters and attributes of the data, the results yielded probably either stuck in local optima or bias by attributes pattern. Performing Genetic Algorithm in the data cluster may increase the probability of the questions being clustered in the optimal group cluster. Dynamic Mutation in Genetic Algorithm used as repair mechanism to ensure the cluster is optimized enough and produce optimum indexed questions set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real Time Detection and Tracking of Mouth Region of Single Human Face Tamper Detection in Speech Based Access Control Systems Using Watermarking A Clustering Algorithm for WSN to Optimize the Network Lifetime Using Type-2 Fuzzy Logic Model On the Trade-Off between Multi-level Security Classification Accuracy and Training Time An Improved Quality of Service Using R-AODV Protocol in MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1