潜艇螺旋桨轴的数学建模与分析

Obeid Muhammad Usmani, Syed Irtiza Ali Shah
{"title":"潜艇螺旋桨轴的数学建模与分析","authors":"Obeid Muhammad Usmani, Syed Irtiza Ali Shah","doi":"10.1109/ICASE54940.2021.9904231","DOIUrl":null,"url":null,"abstract":"In this research modeling, design and analysis of a submarine propeller shaft will be performed using theories of vibrations, the computer software will be used for this purpose mathematical simulations will also be done to verify the results obtained from the software. Vibration Analysis of a three Bladed Propeller Shaft for a Carrier has been discussed in the literature, but not much work has been done till now on the vibrational response of a submarine propeller shaft. The dynamic excitation of the propeller shaft is usually transmitted to the rest of the submarine. Some submarines are subjected to intense levels of vibrations throughout their service additionally silent submarines have become a potent invention, which produces less noise at high speeds however higher vibration results in more noise-reducing the stealth characteristics of the submarines, in this research the propeller shaft will be modeled in such a way that the system vibrations are minimum hence increasing the life of the submarine, reducing the noise and increasing the stealth characteristics of the submarine, this analyses will be done by using theories of vibrations used finite element methods for modelling and analysis. The expected results from the analysis contain the least vibrations, produced by the propeller shaft of the submarine reducing the overall noise. Furthermore, their result help in the development of a system that besides increases the maneuverability of the submarine. We are able to successfully determine the vibration present in the system, and the approach on how to reduce them.","PeriodicalId":300328,"journal":{"name":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling and Analysis of Submarine Propeller Shaft\",\"authors\":\"Obeid Muhammad Usmani, Syed Irtiza Ali Shah\",\"doi\":\"10.1109/ICASE54940.2021.9904231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research modeling, design and analysis of a submarine propeller shaft will be performed using theories of vibrations, the computer software will be used for this purpose mathematical simulations will also be done to verify the results obtained from the software. Vibration Analysis of a three Bladed Propeller Shaft for a Carrier has been discussed in the literature, but not much work has been done till now on the vibrational response of a submarine propeller shaft. The dynamic excitation of the propeller shaft is usually transmitted to the rest of the submarine. Some submarines are subjected to intense levels of vibrations throughout their service additionally silent submarines have become a potent invention, which produces less noise at high speeds however higher vibration results in more noise-reducing the stealth characteristics of the submarines, in this research the propeller shaft will be modeled in such a way that the system vibrations are minimum hence increasing the life of the submarine, reducing the noise and increasing the stealth characteristics of the submarine, this analyses will be done by using theories of vibrations used finite element methods for modelling and analysis. The expected results from the analysis contain the least vibrations, produced by the propeller shaft of the submarine reducing the overall noise. Furthermore, their result help in the development of a system that besides increases the maneuverability of the submarine. We are able to successfully determine the vibration present in the system, and the approach on how to reduce them.\",\"PeriodicalId\":300328,\"journal\":{\"name\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASE54940.2021.9904231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASE54940.2021.9904231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,将使用振动理论对潜艇螺旋桨轴进行建模、设计和分析,计算机软件将用于此目的,数学模拟也将用于验证从软件中获得的结果。文献中已经讨论了舰载机三叶片螺旋桨轴的振动分析,但迄今为止对潜艇螺旋桨轴的振动响应研究还不多。螺旋桨轴的动力激励通常传递给潜艇的其余部分。一些潜艇在服役期间受到强烈的振动水平,此外,静音潜艇已经成为一项强有力的发明,在高速下产生更少的噪音,然而更高的振动导致更多的噪音减少潜艇的隐身特性,在本研究中,传动轴将以这样一种方式建模,即系统振动最小,因此增加了潜艇的寿命。为了降低噪音和增加潜艇的隐身特性,这项分析将通过使用有限元方法进行建模和分析的振动理论来完成。分析的预期结果包含了最小的振动,由潜艇的螺旋桨轴产生,降低了整体噪音。此外,他们的结果有助于开发一种系统,除了增加潜艇的机动性之外。我们能够成功地确定系统中存在的振动,以及如何减少它们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Modelling and Analysis of Submarine Propeller Shaft
In this research modeling, design and analysis of a submarine propeller shaft will be performed using theories of vibrations, the computer software will be used for this purpose mathematical simulations will also be done to verify the results obtained from the software. Vibration Analysis of a three Bladed Propeller Shaft for a Carrier has been discussed in the literature, but not much work has been done till now on the vibrational response of a submarine propeller shaft. The dynamic excitation of the propeller shaft is usually transmitted to the rest of the submarine. Some submarines are subjected to intense levels of vibrations throughout their service additionally silent submarines have become a potent invention, which produces less noise at high speeds however higher vibration results in more noise-reducing the stealth characteristics of the submarines, in this research the propeller shaft will be modeled in such a way that the system vibrations are minimum hence increasing the life of the submarine, reducing the noise and increasing the stealth characteristics of the submarine, this analyses will be done by using theories of vibrations used finite element methods for modelling and analysis. The expected results from the analysis contain the least vibrations, produced by the propeller shaft of the submarine reducing the overall noise. Furthermore, their result help in the development of a system that besides increases the maneuverability of the submarine. We are able to successfully determine the vibration present in the system, and the approach on how to reduce them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Campus Terrain Surveying and Mapping using Low Range 2D Laser Scanners Design and Development of a Vivaldi Antenna Array for Airborne X-Band Applications Gamma-ray Burst High-latitude Emission: Simulating the Propagation Effect Using Optical Remote Sensing and Radar Altimeter Data for Lake Volume Estimation of Manchar Lake, Pakistan Generalised Modelling of Sound Signatures for Characterization of Multi-copter Unmanned Air Vehicles based on Aero-acoustics Measurements and CFD Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1