多变量时间序列数据的动态贝叶斯网络缺失值估算

Steffi Pauli Susanti, F. N. Azizah
{"title":"多变量时间序列数据的动态贝叶斯网络缺失值估算","authors":"Steffi Pauli Susanti, F. N. Azizah","doi":"10.1109/ICODSE.2017.8285864","DOIUrl":null,"url":null,"abstract":"Time series and multivariate data are required to accommodate more complex decision making. Data are processed using data mining techniques in order to obtain valuable trends in the data that can be used to support in decision making processes. Unfortunately, we often encounter a lot of problems in preparing the data for data mining process. One of the problem is missing values. Missing values in data may causes inaccurate results of data processing. Imputation are used to handle missing values. In this thesis missing value are handled using Dynamic Bayesian Network (DBN). DBN is a useful technique to maintain the relationships between attributes of data. The results of the prediction are used to fill in the missing values in the data. Support Vector Regression (SVR) algorithm is used for predicting the missing values. It is chosen for its good performance in comparison to other similar algorithms. Validation of the technique is carried out by using Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE used to count an error rate for prediction model. The use of the DBN of feature selection for SVR can't decrease the error rate of the model.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Imputation of missing value using dynamic Bayesian network for multivariate time series data\",\"authors\":\"Steffi Pauli Susanti, F. N. Azizah\",\"doi\":\"10.1109/ICODSE.2017.8285864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series and multivariate data are required to accommodate more complex decision making. Data are processed using data mining techniques in order to obtain valuable trends in the data that can be used to support in decision making processes. Unfortunately, we often encounter a lot of problems in preparing the data for data mining process. One of the problem is missing values. Missing values in data may causes inaccurate results of data processing. Imputation are used to handle missing values. In this thesis missing value are handled using Dynamic Bayesian Network (DBN). DBN is a useful technique to maintain the relationships between attributes of data. The results of the prediction are used to fill in the missing values in the data. Support Vector Regression (SVR) algorithm is used for predicting the missing values. It is chosen for its good performance in comparison to other similar algorithms. Validation of the technique is carried out by using Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE used to count an error rate for prediction model. The use of the DBN of feature selection for SVR can't decrease the error rate of the model.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

时间序列和多变量数据需要适应更复杂的决策。使用数据挖掘技术对数据进行处理,以便在数据中获得可用于支持决策过程的有价值的趋势。不幸的是,在为数据挖掘准备数据的过程中,我们经常遇到很多问题。其中一个问题是缺少值。数据中的缺失值可能导致数据处理结果不准确。输入用于处理缺失值。本文采用动态贝叶斯网络(DBN)处理缺失值。DBN是一种维护数据属性之间关系的有用技术。预测结果用于填充数据中的缺失值。采用支持向量回归(SVR)算法对缺失值进行预测。与其他类似算法相比,它的性能较好。利用对称平均绝对百分比误差(SMAPE)对该技术进行了验证。SMAPE用于计算预测模型的错误率。将特征选择的DBN用于支持向量回归并不能降低模型的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imputation of missing value using dynamic Bayesian network for multivariate time series data
Time series and multivariate data are required to accommodate more complex decision making. Data are processed using data mining techniques in order to obtain valuable trends in the data that can be used to support in decision making processes. Unfortunately, we often encounter a lot of problems in preparing the data for data mining process. One of the problem is missing values. Missing values in data may causes inaccurate results of data processing. Imputation are used to handle missing values. In this thesis missing value are handled using Dynamic Bayesian Network (DBN). DBN is a useful technique to maintain the relationships between attributes of data. The results of the prediction are used to fill in the missing values in the data. Support Vector Regression (SVR) algorithm is used for predicting the missing values. It is chosen for its good performance in comparison to other similar algorithms. Validation of the technique is carried out by using Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE used to count an error rate for prediction model. The use of the DBN of feature selection for SVR can't decrease the error rate of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1