设计和实现基于云的物联网平台,用于智能建筑中的数据采集和设备供应管理

P. Jamborsalamati, Edstan Fernandez, M. J. Hossain, F. Rafi
{"title":"设计和实现基于云的物联网平台,用于智能建筑中的数据采集和设备供应管理","authors":"P. Jamborsalamati, Edstan Fernandez, M. J. Hossain, F. Rafi","doi":"10.1109/AUPEC.2017.8282504","DOIUrl":null,"url":null,"abstract":"Increased numbers of installed IoT devices and more complex building management algorithms make vital a secure, reliable, and cloud-based IoT platform, offering provisions for devices to communicate and react to predefined situations. This platform facilitates data acquisition, management, and interactions among IoT devices in order to exchange information including measurement data and control signals with controllers via a two-way communication mechanism. In this paper, an IoT platform to implement a device-supply management algorithm in a smart building, aiming to supply higher-priority devices from solar power and to maximize solar-power utilization, has been designed and implemented. Message Queue Telemetry Transport (MQTT), which is the state-of-the-art Internet of Things (IoT) protocol, has been adopted in this work to incorporate communications between the devices and the controller. MQTT publisher and subscriber are deployed in the Python programming language. A cloud-based data aggregation platform has been used with an interface to MATLAB, in which the device management algorithm runs. From the results, it could be observed that the IoT platform successfully achieves the goals of the designed device-supply management algorithm.","PeriodicalId":155608,"journal":{"name":"2017 Australasian Universities Power Engineering Conference (AUPEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design and implementation of a cloud-based IoT platform for data acquisition and device supply management in smart buildings\",\"authors\":\"P. Jamborsalamati, Edstan Fernandez, M. J. Hossain, F. Rafi\",\"doi\":\"10.1109/AUPEC.2017.8282504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased numbers of installed IoT devices and more complex building management algorithms make vital a secure, reliable, and cloud-based IoT platform, offering provisions for devices to communicate and react to predefined situations. This platform facilitates data acquisition, management, and interactions among IoT devices in order to exchange information including measurement data and control signals with controllers via a two-way communication mechanism. In this paper, an IoT platform to implement a device-supply management algorithm in a smart building, aiming to supply higher-priority devices from solar power and to maximize solar-power utilization, has been designed and implemented. Message Queue Telemetry Transport (MQTT), which is the state-of-the-art Internet of Things (IoT) protocol, has been adopted in this work to incorporate communications between the devices and the controller. MQTT publisher and subscriber are deployed in the Python programming language. A cloud-based data aggregation platform has been used with an interface to MATLAB, in which the device management algorithm runs. From the results, it could be observed that the IoT platform successfully achieves the goals of the designed device-supply management algorithm.\",\"PeriodicalId\":155608,\"journal\":{\"name\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUPEC.2017.8282504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2017.8282504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

安装的物联网设备数量的增加和更复杂的建筑管理算法使得安全、可靠和基于云的物联网平台至关重要,为设备提供通信和对预定义情况做出反应的规定。该平台便于物联网设备之间的数据采集、管理和交互,以便通过双向通信机制与控制器交换包括测量数据和控制信号在内的信息。本文设计并实现了一种在智能建筑中实现设备供应管理算法的物联网平台,该平台旨在从太阳能中供应更高优先级的设备,并最大限度地利用太阳能。消息队列遥测传输(MQTT)是最先进的物联网(IoT)协议,在这项工作中采用了设备与控制器之间的通信。MQTT发布者和订阅者使用Python编程语言进行部署。采用了基于云的数据聚合平台,并提供了与MATLAB的接口,设备管理算法在该平台上运行。从结果可以看出,物联网平台成功实现了设计的设备供应管理算法的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and implementation of a cloud-based IoT platform for data acquisition and device supply management in smart buildings
Increased numbers of installed IoT devices and more complex building management algorithms make vital a secure, reliable, and cloud-based IoT platform, offering provisions for devices to communicate and react to predefined situations. This platform facilitates data acquisition, management, and interactions among IoT devices in order to exchange information including measurement data and control signals with controllers via a two-way communication mechanism. In this paper, an IoT platform to implement a device-supply management algorithm in a smart building, aiming to supply higher-priority devices from solar power and to maximize solar-power utilization, has been designed and implemented. Message Queue Telemetry Transport (MQTT), which is the state-of-the-art Internet of Things (IoT) protocol, has been adopted in this work to incorporate communications between the devices and the controller. MQTT publisher and subscriber are deployed in the Python programming language. A cloud-based data aggregation platform has been used with an interface to MATLAB, in which the device management algorithm runs. From the results, it could be observed that the IoT platform successfully achieves the goals of the designed device-supply management algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of automatic hyperparameter tuning for residential load forecasting via deep learning Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer Modeling of multi-junction solar cells for maximum power point tracking to improve the conversion efficiency The importance of lightning education and a lightning protection risk assessment to reduce fatalities Recent advances in common mode voltage mitigation techniques based on MPC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1