基于s变换的变压器保护算法

Kubra Nur Akpinar, O. Ozgonenel, U. Kurt
{"title":"基于s变换的变压器保护算法","authors":"Kubra Nur Akpinar, O. Ozgonenel, U. Kurt","doi":"10.1109/SIU49456.2020.9302473","DOIUrl":null,"url":null,"abstract":"In this study, Stockwell transform and artificial neural network were used in determining the inrush current and the internal current fault based on the power transformer protection. The S-transform is a robust transform that incorporates the time and frequency characteristics used in the analysis of non-stationary short term transient signals. It is used for pattern recognition for distinction between internal faults and inrush current. Time-frequency images were obtained by using S-transform, and the obtained images were observed to be different in internal faults and inrush current. The feature extraction is based on statistical methods, standard deviation and average value, the classification process was performed with the multilayer feed forward artificial neural network. The classification performance is calculated at a hundred percent accuracy.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer Protection Algorithm Based on S-Transform\",\"authors\":\"Kubra Nur Akpinar, O. Ozgonenel, U. Kurt\",\"doi\":\"10.1109/SIU49456.2020.9302473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Stockwell transform and artificial neural network were used in determining the inrush current and the internal current fault based on the power transformer protection. The S-transform is a robust transform that incorporates the time and frequency characteristics used in the analysis of non-stationary short term transient signals. It is used for pattern recognition for distinction between internal faults and inrush current. Time-frequency images were obtained by using S-transform, and the obtained images were observed to be different in internal faults and inrush current. The feature extraction is based on statistical methods, standard deviation and average value, the classification process was performed with the multilayer feed forward artificial neural network. The classification performance is calculated at a hundred percent accuracy.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将斯托克韦尔变换和人工神经网络应用于电力变压器保护的励磁涌流和内部电流故障的确定。s变换是一种鲁棒变换,结合了非平稳短期瞬态信号分析中使用的时间和频率特性。它用于模式识别,以区分内部故障和涌流。利用s变换获得时频图像,观察到得到的图像在内部故障和浪涌电流上存在差异。特征提取基于统计方法、标准差和平均值,分类过程采用多层前馈人工神经网络进行。分类性能以100%的准确率计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer Protection Algorithm Based on S-Transform
In this study, Stockwell transform and artificial neural network were used in determining the inrush current and the internal current fault based on the power transformer protection. The S-transform is a robust transform that incorporates the time and frequency characteristics used in the analysis of non-stationary short term transient signals. It is used for pattern recognition for distinction between internal faults and inrush current. Time-frequency images were obtained by using S-transform, and the obtained images were observed to be different in internal faults and inrush current. The feature extraction is based on statistical methods, standard deviation and average value, the classification process was performed with the multilayer feed forward artificial neural network. The classification performance is calculated at a hundred percent accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Classification With Deep CNN Ensembles Design of a New System for Upper Extremity Movement Ability Assessment Stock Market Prediction with Stacked Autoencoder Based Feature Reduction Segmentation networks reinforced with attribute profiles for large scale land-cover map production Encoded Deep Features for Visual Place Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1