使用遗传算法的3D-MRI数据自动分割

Reinhard Möller, R. Zeipelt
{"title":"使用遗传算法的3D-MRI数据自动分割","authors":"Reinhard Möller, R. Zeipelt","doi":"10.1109/MIAR.2001.930303","DOIUrl":null,"url":null,"abstract":"One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.","PeriodicalId":375408,"journal":{"name":"Proceedings International Workshop on Medical Imaging and Augmented Reality","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic segmentation of 3D-MRI data using a genetic algorithm\",\"authors\":\"Reinhard Möller, R. Zeipelt\",\"doi\":\"10.1109/MIAR.2001.930303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.\",\"PeriodicalId\":375408,\"journal\":{\"name\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIAR.2001.930303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Workshop on Medical Imaging and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAR.2001.930303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最近发展起来的最有趣的脑活动成像方法之一是功能性磁共振成像(fMRI)。fMRI的优点,即检查的无创性、可重复性和互动性,必须与数据失真和检查时间有限等问题进行衡量。一个主要的问题是,大多数fMRI分割过程部分是交互式的。为了在可接受的短时间内得到有意义的分割结果,对精确、自动工作的分割算法提出了很高的要求。本文讨论了遗传算法(GA)在功能磁共振成像过程中对人脑灰质和白质的自动三维分割的使用和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic segmentation of 3D-MRI data using a genetic algorithm
One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Template-matching approach to edge detection of volume data Level set methods and image segmentation Hybrid FEM for deformation of soft tissues in surgery simulation Segmentation and analysis of leg ulcers color images Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1