{"title":"LDC:允许在超维空间中按部分距离搜索","authors":"Nick Koudas, B. Ooi, Heng Tao Shen, A. Tung","doi":"10.1109/ICDE.2004.1319980","DOIUrl":null,"url":null,"abstract":"Recent advances in research fields like multimedia and bioinformatics have brought about a new generation of hyper-dimensional databases which can contain hundreds or even thousands of dimensions. Such hyper-dimensional databases pose significant problems to existing high-dimensional indexing techniques which have been developed for indexing databases with (commonly) less than a hundred dimensions. To support efficient querying and retrieval on hyper-dimensional databases, we propose a methodology called local digital coding (LDC) which can support k-nearest neighbors (KNN) queries on hyper-dimensional databases and yet co-exist with ubiquitous indices, such as B+-trees. LDC extracts a simple bitmap representation called digital code(DC) for each point in the database. Pruning during KNN search is performed by dynamically selecting only a subset of the bits from the DC based on which subsequent comparisons are performed. In doing so, expensive operations involved in computing L-norm distance functions between hyper-dimensional data can be avoided. Extensive experiments are conducted to show that our methodology offers significant performance advantages over other existing indexing methods on both real life and synthetic hyper-dimensional datasets.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"LDC: enabling search by partial distance in a hyper-dimensional space\",\"authors\":\"Nick Koudas, B. Ooi, Heng Tao Shen, A. Tung\",\"doi\":\"10.1109/ICDE.2004.1319980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in research fields like multimedia and bioinformatics have brought about a new generation of hyper-dimensional databases which can contain hundreds or even thousands of dimensions. Such hyper-dimensional databases pose significant problems to existing high-dimensional indexing techniques which have been developed for indexing databases with (commonly) less than a hundred dimensions. To support efficient querying and retrieval on hyper-dimensional databases, we propose a methodology called local digital coding (LDC) which can support k-nearest neighbors (KNN) queries on hyper-dimensional databases and yet co-exist with ubiquitous indices, such as B+-trees. LDC extracts a simple bitmap representation called digital code(DC) for each point in the database. Pruning during KNN search is performed by dynamically selecting only a subset of the bits from the DC based on which subsequent comparisons are performed. In doing so, expensive operations involved in computing L-norm distance functions between hyper-dimensional data can be avoided. Extensive experiments are conducted to show that our methodology offers significant performance advantages over other existing indexing methods on both real life and synthetic hyper-dimensional datasets.\",\"PeriodicalId\":358862,\"journal\":{\"name\":\"Proceedings. 20th International Conference on Data Engineering\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 20th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2004.1319980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1319980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LDC: enabling search by partial distance in a hyper-dimensional space
Recent advances in research fields like multimedia and bioinformatics have brought about a new generation of hyper-dimensional databases which can contain hundreds or even thousands of dimensions. Such hyper-dimensional databases pose significant problems to existing high-dimensional indexing techniques which have been developed for indexing databases with (commonly) less than a hundred dimensions. To support efficient querying and retrieval on hyper-dimensional databases, we propose a methodology called local digital coding (LDC) which can support k-nearest neighbors (KNN) queries on hyper-dimensional databases and yet co-exist with ubiquitous indices, such as B+-trees. LDC extracts a simple bitmap representation called digital code(DC) for each point in the database. Pruning during KNN search is performed by dynamically selecting only a subset of the bits from the DC based on which subsequent comparisons are performed. In doing so, expensive operations involved in computing L-norm distance functions between hyper-dimensional data can be avoided. Extensive experiments are conducted to show that our methodology offers significant performance advantages over other existing indexing methods on both real life and synthetic hyper-dimensional datasets.