基于UNILM框架的对抗训练新闻标题生成方法

Yue Heng
{"title":"基于UNILM框架的对抗训练新闻标题生成方法","authors":"Yue Heng","doi":"10.1109/ICCEA53728.2021.00014","DOIUrl":null,"url":null,"abstract":"Text generation is now a very mature task. Many methods have been applied to text generation and achieved good results. This paper uses the pre-trained model Unilm with adversarial training to generate news headlines from the Thucnews dataset. We fine tune the methods and parameters in the model and produced some results for reference or comparison","PeriodicalId":325790,"journal":{"name":"2021 International Conference on Computer Engineering and Application (ICCEA)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A News Title Generation Method Based on UNILM Framework via Adversarial Training\",\"authors\":\"Yue Heng\",\"doi\":\"10.1109/ICCEA53728.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text generation is now a very mature task. Many methods have been applied to text generation and achieved good results. This paper uses the pre-trained model Unilm with adversarial training to generate news headlines from the Thucnews dataset. We fine tune the methods and parameters in the model and produced some results for reference or comparison\",\"PeriodicalId\":325790,\"journal\":{\"name\":\"2021 International Conference on Computer Engineering and Application (ICCEA)\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computer Engineering and Application (ICCEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEA53728.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Application (ICCEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEA53728.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本生成现在是一个非常成熟的任务。许多方法已经应用于文本生成,并取得了良好的效果。本文使用带有对抗训练的预训练模型Unilm从Thucnews数据集生成新闻标题。我们对模型中的方法和参数进行了微调,得出了一些可供参考或比较的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A News Title Generation Method Based on UNILM Framework via Adversarial Training
Text generation is now a very mature task. Many methods have been applied to text generation and achieved good results. This paper uses the pre-trained model Unilm with adversarial training to generate news headlines from the Thucnews dataset. We fine tune the methods and parameters in the model and produced some results for reference or comparison
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Few-shot Image Classification based on LMRNet Design and Test on Acoustic Device for Actively Measuring Underwater Short Distance with High-Precision KVM PT Based Coverage Feedback Fuzzing for Network Key Devices Acoustic impedance inversion base on dual learning Numerical simulation of aerodynamic force and moored state in airship transport process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1