零概率分类器标签描述的无监督排序和聚合

Angelo Basile, Marc Franco-Salvador, Paolo Rosso
{"title":"零概率分类器标签描述的无监督排序和聚合","authors":"Angelo Basile, Marc Franco-Salvador, Paolo Rosso","doi":"10.48550/arXiv.2204.09481","DOIUrl":null,"url":null,"abstract":"Zero-shot text classifiers based on label descriptions embed an input text and a set of labels into the same space: measures such as cosine similarity can then be used to select the most similar label description to the input text as the predicted label. In a true zero-shot setup, designing good label descriptions is challenging because no development set is available. Inspired by the literature on Learning with Disagreements, we look at how probabilistic models of repeated rating analysis can be used for selecting the best label descriptions in an unsupervised fashion. We evaluate our method on a set of diverse datasets and tasks (sentiment, topic and stance). Furthermore, we show that multiple, noisy label descriptions can be aggregated to boost the performance.","PeriodicalId":136374,"journal":{"name":"International Conference on Applications of Natural Language to Data Bases","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Ranking and Aggregation of Label Descriptions for Zero-Shot Classifiers\",\"authors\":\"Angelo Basile, Marc Franco-Salvador, Paolo Rosso\",\"doi\":\"10.48550/arXiv.2204.09481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-shot text classifiers based on label descriptions embed an input text and a set of labels into the same space: measures such as cosine similarity can then be used to select the most similar label description to the input text as the predicted label. In a true zero-shot setup, designing good label descriptions is challenging because no development set is available. Inspired by the literature on Learning with Disagreements, we look at how probabilistic models of repeated rating analysis can be used for selecting the best label descriptions in an unsupervised fashion. We evaluate our method on a set of diverse datasets and tasks (sentiment, topic and stance). Furthermore, we show that multiple, noisy label descriptions can be aggregated to boost the performance.\",\"PeriodicalId\":136374,\"journal\":{\"name\":\"International Conference on Applications of Natural Language to Data Bases\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Applications of Natural Language to Data Bases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.09481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Applications of Natural Language to Data Bases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.09481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于标签描述的Zero-shot文本分类器将输入文本和一组标签嵌入到相同的空间中:然后可以使用余弦相似度等度量来选择与输入文本最相似的标签描述作为预测标签。在真正的零尝试设置中,设计良好的标签描述是具有挑战性的,因为没有可用的开发集。受关于分歧学习的文献的启发,我们研究了如何使用重复评级分析的概率模型以无监督的方式选择最佳标签描述。我们在一组不同的数据集和任务(情感、主题和立场)上评估我们的方法。此外,我们还展示了可以聚合多个有噪声的标签描述以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Ranking and Aggregation of Label Descriptions for Zero-Shot Classifiers
Zero-shot text classifiers based on label descriptions embed an input text and a set of labels into the same space: measures such as cosine similarity can then be used to select the most similar label description to the input text as the predicted label. In a true zero-shot setup, designing good label descriptions is challenging because no development set is available. Inspired by the literature on Learning with Disagreements, we look at how probabilistic models of repeated rating analysis can be used for selecting the best label descriptions in an unsupervised fashion. We evaluate our method on a set of diverse datasets and tasks (sentiment, topic and stance). Furthermore, we show that multiple, noisy label descriptions can be aggregated to boost the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adversarial Capsule Networks for Romanian Satire Detection and Sentiment Analysis RoBERTweet: A BERT Language Model for Romanian Tweets LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts A Few-shot Approach to Resume Information Extraction via Prompts Detecting early signs of depression in the conversational domain: The role of transfer learning in low-resource scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1