利用社交媒体数据增强客户服务中的意图检测

JianTao Huang, Yi-Ru Liou, Hsin-Hsi Chen
{"title":"利用社交媒体数据增强客户服务中的意图检测","authors":"JianTao Huang, Yi-Ru Liou, Hsin-Hsi Chen","doi":"10.1145/3442442.3451377","DOIUrl":null,"url":null,"abstract":"Intent detection plays an important role in customer service dialog systems for providing high-quality service in the financial industry. The lack of publicly available datasets and high annotation cost are two challenging issues in this research direction. To overcome these challenges, we propose a social media enhanced self-training approach for intent detection by using label names only. The experimental results show the effectiveness of the proposed method.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"2022 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing Intent Detection in Customer Service with Social Media Data\",\"authors\":\"JianTao Huang, Yi-Ru Liou, Hsin-Hsi Chen\",\"doi\":\"10.1145/3442442.3451377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intent detection plays an important role in customer service dialog systems for providing high-quality service in the financial industry. The lack of publicly available datasets and high annotation cost are two challenging issues in this research direction. To overcome these challenges, we propose a social media enhanced self-training approach for intent detection by using label names only. The experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"2022 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3451377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

意图检测在客户服务对话系统中发挥着重要作用,为金融业提供高质量的服务。缺乏公开可用的数据集和高标注成本是这一研究方向面临的两个挑战。为了克服这些挑战,我们提出了一种仅使用标签名称进行意图检测的社交媒体增强自我训练方法。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Intent Detection in Customer Service with Social Media Data
Intent detection plays an important role in customer service dialog systems for providing high-quality service in the financial industry. The lack of publicly available datasets and high annotation cost are two challenging issues in this research direction. To overcome these challenges, we propose a social media enhanced self-training approach for intent detection by using label names only. The experimental results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1