Graeme Best, Rohit Garg, John Keller, Geoffrey A. Hollinger, S. Scherer
{"title":"一组空中机器人对多种环境的弹性多传感器探索","authors":"Graeme Best, Rohit Garg, John Keller, Geoffrey A. Hollinger, S. Scherer","doi":"10.15607/rss.2022.xviii.004","DOIUrl":null,"url":null,"abstract":"—We present a coordinated autonomy pipeline for multi-sensor exploration of confined environments. We simultane- ously address four broad challenges that are typically overlooked in prior work: (a) make effective use of both range and vision sensing modalities, (b) perform this exploration across a wide range of environments, (c) be resilient to adverse events, and (d) execute this onboard a team of physical robots. Our solution centers around a behavior tree architecture, which adaptively switches between various behaviors involving coordinated exploration and responding to adverse events. Our exploration strategy exploits the benefits of both visual and range sensors with a new frontier-based exploration algorithm. The autonomy pipeline is evaluated with an extensive set of field experiments, with teams of up to 3 robots that fly up to 3 m/s and distances exceeding one kilometer. We provide a summary of various field experiments and detail resilient behaviors that arose: maneuvering narrow doorways, adapting to unexpected environment changes, and emergency landing. We provide an extended discussion of lessons learned, release software as open source, and present a video in the supplementary material.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Resilient Multi-Sensor Exploration of Multifarious Environments with a Team of Aerial Robots\",\"authors\":\"Graeme Best, Rohit Garg, John Keller, Geoffrey A. Hollinger, S. Scherer\",\"doi\":\"10.15607/rss.2022.xviii.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—We present a coordinated autonomy pipeline for multi-sensor exploration of confined environments. We simultane- ously address four broad challenges that are typically overlooked in prior work: (a) make effective use of both range and vision sensing modalities, (b) perform this exploration across a wide range of environments, (c) be resilient to adverse events, and (d) execute this onboard a team of physical robots. Our solution centers around a behavior tree architecture, which adaptively switches between various behaviors involving coordinated exploration and responding to adverse events. Our exploration strategy exploits the benefits of both visual and range sensors with a new frontier-based exploration algorithm. The autonomy pipeline is evaluated with an extensive set of field experiments, with teams of up to 3 robots that fly up to 3 m/s and distances exceeding one kilometer. We provide a summary of various field experiments and detail resilient behaviors that arose: maneuvering narrow doorways, adapting to unexpected environment changes, and emergency landing. We provide an extended discussion of lessons learned, release software as open source, and present a video in the supplementary material.\",\"PeriodicalId\":340265,\"journal\":{\"name\":\"Robotics: Science and Systems XVIII\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XVIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/rss.2022.xviii.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resilient Multi-Sensor Exploration of Multifarious Environments with a Team of Aerial Robots
—We present a coordinated autonomy pipeline for multi-sensor exploration of confined environments. We simultane- ously address four broad challenges that are typically overlooked in prior work: (a) make effective use of both range and vision sensing modalities, (b) perform this exploration across a wide range of environments, (c) be resilient to adverse events, and (d) execute this onboard a team of physical robots. Our solution centers around a behavior tree architecture, which adaptively switches between various behaviors involving coordinated exploration and responding to adverse events. Our exploration strategy exploits the benefits of both visual and range sensors with a new frontier-based exploration algorithm. The autonomy pipeline is evaluated with an extensive set of field experiments, with teams of up to 3 robots that fly up to 3 m/s and distances exceeding one kilometer. We provide a summary of various field experiments and detail resilient behaviors that arose: maneuvering narrow doorways, adapting to unexpected environment changes, and emergency landing. We provide an extended discussion of lessons learned, release software as open source, and present a video in the supplementary material.