{"title":"热力学设计能量模型","authors":"U. Bandelow, H. Gajewski, R. Hunlich","doi":"10.1109/NUSOD.2003.1259039","DOIUrl":null,"url":null,"abstract":"A thermodynamic designed energy model for semiconductor devices is discussed. A system of evolution equations based on an expression for the density of the free energy is derived. First principles such as entropy maximum principle and the principle of partial local equilibrium are applied. The free energy is assumed as the sum of the internal free energy and the electrostatic field energy. A 1.55 /spl mu/m RW MQW laser is used in the simulations.","PeriodicalId":206987,"journal":{"name":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic designed energy model\",\"authors\":\"U. Bandelow, H. Gajewski, R. Hunlich\",\"doi\":\"10.1109/NUSOD.2003.1259039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermodynamic designed energy model for semiconductor devices is discussed. A system of evolution equations based on an expression for the density of the free energy is derived. First principles such as entropy maximum principle and the principle of partial local equilibrium are applied. The free energy is assumed as the sum of the internal free energy and the electrostatic field energy. A 1.55 /spl mu/m RW MQW laser is used in the simulations.\",\"PeriodicalId\":206987,\"journal\":{\"name\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2003.1259039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2003.1259039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
讨论了半导体器件的热力学设计能量模型。在自由能密度表达式的基础上,导出了一套演化方程。应用了熵极大原理和局部局部平衡原理等第一性原理。自由能被假定为内部自由能和静电场能量的总和。模拟中使用了1.55 /spl μ m RW MQW激光器。
A thermodynamic designed energy model for semiconductor devices is discussed. A system of evolution equations based on an expression for the density of the free energy is derived. First principles such as entropy maximum principle and the principle of partial local equilibrium are applied. The free energy is assumed as the sum of the internal free energy and the electrostatic field energy. A 1.55 /spl mu/m RW MQW laser is used in the simulations.