GPU图形分析高级编程模型的性能表征

Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, John Douglas Owens
{"title":"GPU图形分析高级编程模型的性能表征","authors":"Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, John Douglas Owens","doi":"10.1109/IISWC.2015.13","DOIUrl":null,"url":null,"abstract":"We identify several factors that are critical to high-performance GPU graph analytics: efficient building block operators, synchronization and data movement, workload distribution and load balancing, and memory access patterns. We analyze the impact of these critical factors through three GPU graph analytic frameworks, Gun rock, Map Graph, and VertexAPI2. We also examine their effect on different workloads: four common graph primitives from multiple graph application domains, evaluated through real-world and synthetic graphs. We show that efficient building block operators enable more powerful operations for fast information propagation and result in fewer device kernel invocations, less data movement, and fewer global synchronizations, and thus are key focus areas for efficient large-scale graph analytics on the GPU.","PeriodicalId":142698,"journal":{"name":"2015 IEEE International Symposium on Workload Characterization","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Performance Characterization of High-Level Programming Models for GPU Graph Analytics\",\"authors\":\"Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, John Douglas Owens\",\"doi\":\"10.1109/IISWC.2015.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify several factors that are critical to high-performance GPU graph analytics: efficient building block operators, synchronization and data movement, workload distribution and load balancing, and memory access patterns. We analyze the impact of these critical factors through three GPU graph analytic frameworks, Gun rock, Map Graph, and VertexAPI2. We also examine their effect on different workloads: four common graph primitives from multiple graph application domains, evaluated through real-world and synthetic graphs. We show that efficient building block operators enable more powerful operations for fast information propagation and result in fewer device kernel invocations, less data movement, and fewer global synchronizations, and thus are key focus areas for efficient large-scale graph analytics on the GPU.\",\"PeriodicalId\":142698,\"journal\":{\"name\":\"2015 IEEE International Symposium on Workload Characterization\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2015.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们确定了几个对高性能GPU图形分析至关重要的因素:高效的构建块操作符、同步和数据移动、工作负载分配和负载平衡以及内存访问模式。我们通过三个GPU图形分析框架,Gun rock, Map graph和VertexAPI2来分析这些关键因素的影响。我们还研究了它们对不同工作负载的影响:来自多个图应用程序领域的四种常见图原语,通过真实世界和合成图进行评估。我们表明,高效的构建块运算符能够实现更强大的操作,以实现快速的信息传播,并导致更少的设备内核调用,更少的数据移动和更少的全局同步,因此是GPU上高效大规模图形分析的关键重点领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Characterization of High-Level Programming Models for GPU Graph Analytics
We identify several factors that are critical to high-performance GPU graph analytics: efficient building block operators, synchronization and data movement, workload distribution and load balancing, and memory access patterns. We analyze the impact of these critical factors through three GPU graph analytic frameworks, Gun rock, Map Graph, and VertexAPI2. We also examine their effect on different workloads: four common graph primitives from multiple graph application domains, evaluated through real-world and synthetic graphs. We show that efficient building block operators enable more powerful operations for fast information propagation and result in fewer device kernel invocations, less data movement, and fewer global synchronizations, and thus are key focus areas for efficient large-scale graph analytics on the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Computational GPU Design with GT-Pin On Power-Performance Characterization of Concurrent Throughput Kernels CRONO: A Benchmark Suite for Multithreaded Graph Algorithms Executing on Futuristic Multicores Exploring Parallel Programming Models for Heterogeneous Computing Systems Revealing Critical Loads and Hidden Data Locality in GPGPU Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1